Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 864, 2024 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-38195678

RESUMO

The migration of neural progenitor cells (NPCs) to their final destination during development follows well-defined pathways, such as along blood vessels. Cells originating from the highly malignant tumor glioblastoma (GBM) seem to exploit similar routes for infiltrating the brain parenchyma. In this report, we have examined the migration of GBM cells using three-dimensional high-resolution confocal microscopy in brain tumors derived from eight different human GBM cell lines xenografted into immunodeficient mice. The primary invasion routes identified were long-distance migration along white matter tracts and local migration along blood vessels. We found that GBM cells in the majority of tumors (6 out of 8) did not exhibit association with blood vessels. These tumors, derived from low lamin A/C expressing GBM cells, were comparatively highly diffusive and invasive. Conversely, in 2 out of 8 tumors, we noted perivascular invasion and displacement of astrocyte end-feet. These tumors exhibited less diffusive migration, grew as solid tumors, and were distinguished by elevated expression of lamin A/C. We conclude that the migration pattern of glioblastoma is distinctly tumor cell-specific. Furthermore, the ability to invade the confined spaces within white matter tracts may necessitate low expression of lamin A/C, contributing to increased nuclear plasticity. This study highlights the role of GBM heterogeneity in driving the aggressive growth of glioblastoma.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Humanos , Animais , Camundongos , Lamina Tipo A , Encéfalo , Agressão
2.
Mol Syst Biol ; 17(9): e10105, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34528760

RESUMO

Tumor cell heterogeneity is a crucial characteristic of malignant brain tumors and underpins phenomena such as therapy resistance and tumor recurrence. Advances in single-cell analysis have enabled the delineation of distinct cellular states of brain tumor cells, but the time-dependent changes in such states remain poorly understood. Here, we construct quantitative models of the time-dependent transcriptional variation of patient-derived glioblastoma (GBM) cells. We build the models by sampling and profiling barcoded GBM cells and their progeny over the course of 3 weeks and by fitting a mathematical model to estimate changes in GBM cell states and their growth rates. Our model suggests a hierarchical yet plastic organization of GBM, where the rates and patterns of cell state switching are partly patient-specific. Therapeutic interventions produce complex dynamic effects, including inhibition of specific states and altered differentiation. Our method provides a general strategy to uncover time-dependent changes in cancer cells and offers a way to evaluate and predict how therapy affects cell state composition.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Neoplasias Encefálicas/genética , Linhagem Celular Tumoral , Glioblastoma/genética , Humanos , Recidiva Local de Neoplasia , Análise de Célula Única
3.
J Pathol ; 249(3): 295-307, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31298733

RESUMO

Grade IV astrocytoma/glioblastoma multiforme (GBM) is essentially incurable, partly due to its heterogenous nature, demonstrated even within the glioma-initiating cell (GIC) population. Increased therapy resistance of GICs is coupled to transition into a mesenchymal (MES) cell state. The GBM MES molecular signature displays a pronounced inflammatory character and its expression vary within and between tumors. Herein, we investigate how MES transition of GBM cells relates to inflammatory responses of normal astroglia. In response to CNS insults astrocytes enter a reactive cell state and participate in directing neuroinflammation and subsequent healing processes. We found that the MES signature show strong resemblance to gene programs induced in reactive astrocytes. Likewise, astrocyte reactivity gene signatures were enriched in therapy-resistant MES-like GIC clones. Variable expression of astrocyte reactivity related genes also largely defined intratumoral GBM cell heterogeneity at the single-cell level and strongly correlated with our previously defined therapy-resistance signature (based on linked molecular and functional characterization of GIC clones). In line with this, therapy-resistant MES-like GIC secreted immunoregulatory and tissue repair related proteins characteristic of astrocyte reactivity. Moreover, sensitive GIC clones could be made reactive through long-term exposure to the proinflammatory cytokine interleukin 1 beta (IL1ß). IL1ß induced a slow MES transition, increased therapy resistance, and a shift in DNA methylation profile towards that of resistant clones, which confirmed a slow reprogramming process. In summary, GICs enter through MES transition a reactive-astrocyte-like cell state, connected to therapy resistance. Thus, from a biological point of view, MES GICs would preferably be called 'reactive GICs'. The ability of GBM cells to mimic astroglial reactivity contextualizes the immunomodulatory and microenvironment reshaping abilities of GBM cells that generate a tumor-promoting milieu. This insight will be important to guide the development of future sensitizing therapies targeting treatment-resistant relapse-driving cell populations as well as enhancing the efficiency of immunotherapies in GBM. © 2019 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.


Assuntos
Antineoplásicos/farmacologia , Astrócitos/efeitos dos fármacos , Neoplasias Encefálicas/tratamento farmacológico , Resistencia a Medicamentos Antineoplásicos , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Glioma/tratamento farmacológico , Antineoplásicos/efeitos adversos , Astrócitos/metabolismo , Astrócitos/patologia , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Resistencia a Medicamentos Antineoplásicos/genética , Regulação Neoplásica da Expressão Gênica , Glioma/genética , Glioma/metabolismo , Glioma/patologia , Humanos , Gradação de Tumores , Transcriptoma , Células Tumorais Cultivadas , Microambiente Tumoral
4.
BMC Bioinformatics ; 20(1): 304, 2019 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-31164078

RESUMO

BACKGROUND: Pharmacological treatment of complex diseases using more than two drugs is commonplace in the clinic due to better efficacy, decreased toxicity and reduced risk for developing resistance. However, many of these higher-order treatments have not undergone any detailed preceding in vitro evaluation that could support their therapeutic potential and reveal disease related insights. Despite the increased medical need for discovery and development of higher-order drug combinations, very few reports from systematic large-scale studies along this direction exist. A major reason is lack of computational tools that enable automated design and analysis of exhaustive drug combination experiments, where all possible subsets among a panel of pre-selected drugs have to be evaluated. RESULTS: Motivated by this, we developed COMBImage2, a parallel computational framework for higher-order drug combination analysis. COMBImage2 goes far beyond its predecessor COMBImage in many different ways. In particular, it offers automated 384-well plate design, as well as quality control that involves resampling statistics and inter-plate analyses. Moreover, it is equipped with a generic matched filter based object counting method that is currently designed for apoptotic-like cells. Furthermore, apart from higher-order synergy analyses, COMBImage2 introduces a novel data mining approach for identifying interesting temporal response patterns and disentangling higher- from lower- and single-drug effects. COMBImage2 was employed in the context of a small pilot study focused on the CUSP9v4 protocol, which is currently used in the clinic for treatment of recurrent glioblastoma. For the first time, all 246 possible combinations of order 4 or lower of the 9 single drugs consisting the CUSP9v4 cocktail, were evaluated on an in vitro clonal culture of glioma initiating cells. CONCLUSIONS: COMBImage2 is able to automatically design and robustly analyze exhaustive and in general higher-order drug combination experiments. Such a versatile video microscopy oriented framework is likely to enable, guide and accelerate systematic large-scale drug combination studies not only for cancer but also other diseases.


Assuntos
Antineoplásicos/uso terapêutico , Mineração de Dados/métodos , Combinação de Medicamentos , Glioblastoma/tratamento farmacológico , Algoritmos , Apoptose , Humanos , Microscopia de Vídeo , Recidiva Local de Neoplasia/tratamento farmacológico , Projetos Piloto
5.
BMC Bioinformatics ; 19(1): 453, 2018 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-30477419

RESUMO

BACKGROUND: Large-scale pairwise drug combination analysis has lately gained momentum in drug discovery and development projects, mainly due to the employment of advanced experimental-computational pipelines. This is fortunate as drug combinations are often required for successful treatment of complex diseases. Furthermore, most new drugs cannot totally replace the current standard-of-care medication, but rather have to enter clinical use as add-on treatment. However, there is a clear deficiency of computational tools for label-free and temporal image-based drug combination analysis that go beyond the conventional but relatively uninformative end point measurements. RESULTS: COMBImage is a fast, modular and instrument independent computational framework for in vitro pairwise drug combination analysis that quantifies temporal changes in label-free video microscopy movies. Jointly with automated analyses of temporal changes in cell morphology and confluence, it performs and displays conventional cell viability and synergy end point analyses. The image processing algorithms are parallelized using Google's MapReduce programming model and optimized with respect to method-specific tuning parameters. COMBImage is shown to process time-lapse microscopy movies from 384-well plates within minutes on a single quad core personal computer. This framework was employed in the context of an ongoing drug discovery and development project focused on glioblastoma multiforme; the most deadly form of brain cancer. Interesting add-on effects of two investigational cytotoxic compounds when combined with vorinostat were revealed on recently established clonal cultures of glioma-initiating cells from patient tumor samples. Therapeutic synergies, when normal astrocytes were used as a toxicity cell model, reinforced the pharmacological interest regarding their potential clinical use. CONCLUSIONS: COMBImage enables, for the first time, fast and optimized pairwise drug combination analyses of temporal changes in label-free video microscopy movies. Providing this jointly with conventional cell viability based end point analyses, it could help accelerating and guiding any drug discovery and development project, without use of cell labeling and the need to employ a particular live cell imaging instrument.


Assuntos
Quimioterapia Combinada , Processamento de Imagem Assistida por Computador , Microscopia de Vídeo/métodos , Algoritmos , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Neoplasias Encefálicas/tratamento farmacológico , Sobrevivência Celular/efeitos dos fármacos , Descoberta de Drogas , Glioblastoma/tratamento farmacológico , Humanos , Filmes Cinematográficos
6.
Cancer Res ; 77(7): 1741-1752, 2017 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-28087597

RESUMO

Glioma-initiating cells (GIC) are considered the underlying cause of recurrences of aggressive glioblastomas, replenishing the tumor population and undermining the efficacy of conventional chemotherapy. Here we report the discovery that inhibiting T-type voltage-gated Ca2+ and KCa channels can effectively induce selective cell death of GIC and increase host survival in an orthotopic mouse model of human glioma. At present, the precise cellular pathways affected by the drugs affecting these channels are unknown. However, using cell-based assays and integrated proteomics, phosphoproteomics, and transcriptomics analyses, we identified the downstream signaling events these drugs affect. Changes in plasma membrane depolarization and elevated intracellular Na+, which compromised Na+-dependent nutrient transport, were documented. Deficits in nutrient deficit acted in turn to trigger the unfolded protein response and the amino acid response, leading ultimately to nutrient starvation and GIC cell death. Our results suggest new therapeutic targets to attack aggressive gliomas. Cancer Res; 77(7); 1741-52. ©2017 AACR.


Assuntos
Aminoácidos/metabolismo , Neoplasias Encefálicas/tratamento farmacológico , Bloqueadores dos Canais de Cálcio/farmacologia , Canais de Cálcio Tipo T/fisiologia , Glioma/tratamento farmacológico , Canais de Potássio Cálcio-Ativados/antagonistas & inibidores , Resposta a Proteínas não Dobradas/efeitos dos fármacos , Animais , Transporte Biológico , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Morte Celular , Linhagem Celular Tumoral , Di-Hidropiridinas/farmacologia , Glioma/metabolismo , Glioma/patologia , Humanos , Camundongos , Micotoxinas/farmacologia , Células-Tronco Neoplásicas/patologia , Proteômica , Sódio/metabolismo
7.
Cell Rep ; 17(11): 2994-3009, 2016 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-27974212

RESUMO

Intratumoral heterogeneity is a hallmark of glioblastoma multiforme and thought to negatively affect treatment efficacy. Here, we establish libraries of glioma-initiating cell (GIC) clones from patient samples and find extensive molecular and phenotypic variability among clones, including a range of responses to radiation and drugs. This widespread variability was observed as a continuum of multitherapy resistance phenotypes linked to a proneural-mesenchymal shift in the transcriptome. Multitherapy resistance was associated with a semi-stable cell state that was characterized by an altered DNA methylation pattern at promoter regions of mesenchymal master regulators and enhancers. The gradient of cell states within the GIC compartment constitutes a distinct form of heterogeneity. Our findings may open an avenue toward the development of new therapeutic rationales designed to reverse resistant cell states.


Assuntos
Metilação de DNA/genética , Glioblastoma/genética , Proteínas de Neoplasias/genética , Células-Tronco Neoplásicas/metabolismo , Linhagem Celular Tumoral , Metilação de DNA/efeitos dos fármacos , Metilação de DNA/efeitos da radiação , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Transição Epitelial-Mesenquimal/efeitos da radiação , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos da radiação , Glioblastoma/tratamento farmacológico , Glioblastoma/patologia , Glioblastoma/radioterapia , Humanos , Células-Tronco Neoplásicas/patologia , Regiões Promotoras Genéticas
8.
Cell Rep ; 14(2): 380-9, 2016 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-26748716

RESUMO

Significant advances have been made in methods to analyze genomes and transcriptomes of single cells, but to fully define cell states, proteins must also be accessed as central actors defining a cell's phenotype. Methods currently used to analyze endogenous protein expression in single cells are limited in specificity, throughput, or multiplex capability. Here, we present an approach to simultaneously and specifically interrogate large sets of protein and RNA targets in lysates from individual cells, enabling investigations of cell functions and responses. We applied our method to investigate the effects of BMP4, an experimental therapeutic agent, on early-passage glioblastoma cell cultures. We uncovered significant heterogeneity in responses to treatment at levels of RNA and protein, with a subset of cells reacting in a distinct manner to BMP4. Moreover, we found overall poor correlation between protein and RNA at the level of single cells, with proteins more accurately defining responses to treatment.


Assuntos
Proteínas/genética , Proteômica/métodos , RNA/genética , Linhagem Celular Tumoral , Humanos
9.
EBioMedicine ; 2(10): 1351-63, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26629530

RESUMO

Glioblastoma (GBM) is the most frequent and malignant form of primary brain tumor. GBM is essentially incurable and its resistance to therapy is attributed to a subpopulation of cells called glioma stem cells (GSCs). To meet the present shortage of relevant GBM cell (GC) lines we developed a library of annotated and validated cell lines derived from surgical samples of GBM patients, maintained under conditions to preserve GSC characteristics. This collection, which we call the Human Glioblastoma Cell Culture (HGCC) resource, consists of a biobank of 48 GC lines and an associated database containing high-resolution molecular data. We demonstrate that the HGCC lines are tumorigenic, harbor genomic lesions characteristic of GBMs, and represent all four transcriptional subtypes. The HGCC panel provides an open resource for in vitro and in vivo modeling of a large part of GBM diversity useful to both basic and translational GBM research.


Assuntos
Bancos de Espécimes Biológicos , Glioblastoma/patologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Biomarcadores Tumorais , Linhagem Celular Tumoral , Proliferação de Células , Transformação Celular Neoplásica , Análise por Conglomerados , Variações do Número de Cópias de DNA , Modelos Animais de Doenças , Perfilação da Expressão Gênica , Instabilidade Genômica , Glioblastoma/genética , Glioblastoma/mortalidade , Glioblastoma/cirurgia , Xenoenxertos , Humanos , Estimativa de Kaplan-Meier , Camundongos , Pessoa de Meia-Idade , Gradação de Tumores , Estadiamento de Neoplasias , Prognóstico , Células Tumorais Cultivadas , Adulto Jovem
10.
PLoS One ; 9(12): e115698, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25531110

RESUMO

Tumor-initiating cells are a subpopulation in aggressive cancers that exhibit traits shared with stem cells, including the ability to self-renew and differentiate, commonly referred to as stemness. In addition, such cells are resistant to chemo- and radiation therapy posing a therapeutic challenge. To uncover stemness-associated functions in glioma-initiating cells (GICs), transcriptome profiles were compared to neural stem cells (NSCs) and gene ontology analysis identified an enrichment of Ca2+ signaling genes in NSCs and the more stem-like (NSC-proximal) GICs. Functional analysis in a set of different GIC lines regarding sensitivity to disturbed homeostasis using A23187 and Thapsigargin, revealed that NSC-proximal GICs were more sensitive, corroborating the transcriptome data. Furthermore, Ca2+ drug sensitivity was reduced in GICs after differentiation, with most potent effect in the NSC-proximal GIC, supporting a stemness-associated Ca2+ sensitivity. NSCs and the NSC-proximal GIC line expressed a larger number of ion channels permeable to potassium, sodium and Ca2+. Conversely, a higher number of and higher expression levels of Ca2+ binding genes that may buffer Ca2+, were expressed in NSC-distal GICs. In particular, expression of the AMPA glutamate receptor subunit GRIA1, was found to associate with Ca2+ sensitive NSC-proximal GICs, and decreased as GICs differentiated along with reduced Ca2+ drug sensitivity. The correlation between high expression of Ca2+ channels (such as GRIA1) and sensitivity to Ca2+ drugs was confirmed in an additional nine novel GIC lines. Calcium drug sensitivity also correlated with expression of the NSC markers nestin (NES) and FABP7 (BLBP, brain lipid-binding protein) in this extended analysis. In summary, NSC-associated NES+/FABP7+/GRIA1+ GICs were selectively sensitive to disturbances in Ca2+ homeostasis, providing a potential target mechanism for eradication of an immature population of malignant cells.


Assuntos
Biomarcadores Tumorais/genética , Neoplasias Encefálicas/tratamento farmacológico , Cálcio/farmacologia , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Glioma/tratamento farmacológico , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neurais/efeitos dos fármacos , Western Blotting , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Imunofluorescência , Perfilação da Expressão Gênica , Glioma/genética , Glioma/patologia , Humanos , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Células-Tronco Neurais/metabolismo , Células-Tronco Neurais/patologia , Análise de Sequência com Séries de Oligonucleotídeos , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais/efeitos dos fármacos , Células Tumorais Cultivadas
11.
Virology ; 349(1): 96-111, 2006 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-16483626

RESUMO

Hematopoietic cells are attractive targets for gene therapy, but the conventional adenovirus (Ad) vectors, based on Ad5, transduce these cells inefficiently. One reason for low permissiveness of hematopoietic cells to infection by species C Ads appears to be inefficient attachment. Vectors pseudotyped with species B fibers are clearly more efficient at transducing hematopoietic cells than Ad5. To evaluate which Ad species B type(s) would be the most efficient vector(s) for primary T-cells, B-cells and monocytes, attachment to and entry of the species B1 serotypes 3p and 7p and the species B2 serotypes 11p and 35 into primary PBMCs was studied. Ad11p and Ad35 were the only serotypes to show efficient binding and for which uptake by PBMCs could be detected. Infection of PBMCs by Ad5, Ad11p and Ad35 was compared. Expression of Ad hexons was detected in stimulated PBMCs, most frequently in T-cells, and in unstimulated monocytes, although B-cells appear to be refractory to productive infection. Replication of Ad DNA was severely restricted in most PBMCs. Neither hexon expression nor genome replication could be detected in unstimulated lymphocytes, but FISH and a real-time PCR-based assay suggested that Ad11p and Ad35 DNA reach the nucleus. Activation thus appears to be required for T-cells to be permissive to Ad gene expression. In summary, there are substantial differences between Ad3p and Ad7p on the one hand and Ad11p and Ad35 on the other, in their ability to interact with PBMCs. Ad11p and Ad35 probably represent vectors of choice for these cell types.


Assuntos
Adenovírus Humanos/fisiologia , Linfócitos B/virologia , Proteínas do Capsídeo/biossíntese , Ativação Linfocitária , Monócitos/virologia , Linfócitos T/virologia , Núcleo Celular/química , Replicação do DNA , DNA Viral/biossíntese , DNA Viral/genética , Expressão Gênica , Hibridização in Situ Fluorescente , Microscopia Confocal , Microscopia de Fluorescência , Reação em Cadeia da Polimerase , Linfócitos T/imunologia , Linfócitos T/metabolismo
12.
J Virol ; 80(4): 1897-905, 2006 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-16439545

RESUMO

The major determinant of adenovirus (Ad) attachment to host cells is the C-terminal knob domain of the trimeric fiber protein. Ad type 11p (Ad11p; species B2) in contrast to Ad7p (species B1) utilizes at least two different cellular attachment receptors, designated sBAR (species B adenovirus receptor) and sB2AR (species B2 adenovirus receptor). CD46 has recently been identified as one of the Ad11p attachment receptors. However, CD46 did not seem to constitute a functional receptor for Ad7p. Although Ad7p shares high knob amino acid identity with Ad11p, Ad7p is deficient in binding to both sB2AR and CD46. To determine what regions of the Ad11p fiber knob are necessary for sB2AR-CD46 interaction, we constructed recombinant fiber knobs (rFK) with Ad11p/Ad7p chimeras and Ad11p sequences having a single amino acid substitution from Ad7p. Binding of the constructs to A549 and CHO-CD46 BC1 isoform-expressing cells was analyzed by flow cytometry. Our results indicate that an Arg279Gln [corrected] substitution is sufficient to convert the Ad11p receptor-interaction phenotype to that of Ad7p and abolish sB2AR and CD46 interaction. Also a Glu279Arg substitution in Ad7p rFKs increases CD46 binding. Thus, the lateral HI loop of the Ad11p fiber knob seems to be the key determinant for Ad11p sB2AR-CD46 interaction. This result is comparable to another non-coxsackie-adenovirus receptor binding Ad (Ad37p), where substitution of one amino acid abolishes virus-cell interaction. In conjunction with previous results, our findings also strongly suggest that sB2AR is equivalent to CD46.


Assuntos
Adenovírus Humanos/crescimento & desenvolvimento , Substituição de Aminoácidos , Proteínas do Capsídeo/metabolismo , Receptores Virais/metabolismo , Adenovírus Humanos/genética , Sequência de Aminoácidos , Animais , Células CHO , Proteínas do Capsídeo/química , Proteínas do Capsídeo/genética , Cricetinae , Cricetulus , Citometria de Fluxo , Fluorescência , Humanos , Imuno-Histoquímica , Proteína Cofatora de Membrana/metabolismo , Modelos Moleculares , Dados de Sequência Molecular , Mutação de Sentido Incorreto , Conformação Proteica , Mapeamento de Interação de Proteínas , Estrutura Terciária de Proteína , Recombinação Genética
13.
Virology ; 328(2): 198-207, 2004 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-15464840

RESUMO

Gene transfer into human hematopoietic stem cells using Ad5 is inefficient due to lack of the primary receptor CAR and the secondary receptors alphavbeta3 integrin and alphavbeta5 integrin, and due to the high seroprevalence of Ad5 antibodies in most adults, resulting in diminished gene transduction. In the present study, we screened six species (species A-F) of adenovirus, displaying different tropisms for interaction with CD34+ cells, at the level of virus attachment and expression. Virus particles were biotinylated and their binding capacity was determined by FACS analysis using streptavidin-FITC. Ad11p, Ad35, and Ad3 (species B) showed high binding affinity, while Ad7, Ad11a (species B), and Ad37 (species D) displayed intermediate affinity. Virions of Ad4 (species E), Ad5 (species C), Ad31 (species A), and Ad41 (species F) hardly bound to hematopoietic progenitor cells. Using a double-labeling system, we demonstrated that adenoviruses bind to quiescent CD34+ cells. Ad11p virions showed the highest affinity among the adenoviruses detected. We further confirmed that virus fiber-specific receptors were present on the hematopoietic progenitor cell surface, because both recombinant fiber of Ad11p and specific antiserum against rfiber could block virus attachment. The ability of the adenoviruses to infect hematopoietic cells was studied by immunofluorescence staining. The adenoviruses from species B and Ad37 showed higher infectivity than Ad31, Ad5, Ad4, and Ad41. Among the studied species B adenoviruses, Ad11p manifested a superior infectivity. Thus, we have confirmed that these cells have high-affinity receptors for species B:2 human adenovirus, Ad11p, and this virus may be used as candidate vector to target therapeutic genes to hematopoietic stem cells.


Assuntos
Adenoviridae/metabolismo , Vetores Genéticos/metabolismo , Células-Tronco Hematopoéticas/metabolismo , Receptores Virais/metabolismo , Antígenos CD34/análise , Biotina/metabolismo , Proteínas do Capsídeo/metabolismo , Eletroforese em Gel de Poliacrilamida , Terapia Genética/métodos , Células-Tronco Hematopoéticas/química , Células-Tronco Hematopoéticas/imunologia , Humanos , Microscopia de Fluorescência , Tropismo , Replicação Viral
14.
J Virol ; 77(17): 9183-91, 2003 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-12915534

RESUMO

The 51 human adenovirus serotypes are divided into six species (A to F). Many adenoviruses use the coxsackie-adenovirus receptor (CAR) for attachment to host cells in vitro. Species B adenoviruses do not compete with CAR-binding serotypes for binding to host cells, and it has been suggested that species B adenoviruses use a receptor other than CAR. Species B adenoviruses mainly cause disease in the respiratory tract, the eyes, and in the urinary tract. Here we demonstrate that adenovirus type 11 (Ad11; of species B) binds to Chinese hamster ovary (CHO) cells transfected with CD46 (membrane cofactor protein)-cDNA at least 10 times more strongly than to CHO cells transfected with cDNAs encoding CAR or CD55 (decay accelerating factor). Nonpermissive CHO cells were rendered permissive to Ad11 infection upon transfection with CD46-cDNA. Soluble Ad11 fiber knob but not Ad7 or Ad5 knob inhibited binding of Ad11 virions to CD46-transfected cells, and anti-CD46 antibodies inhibited both binding of and infection by Ad11. From these results we conclude that CD46 is a cellular receptor for Ad11.


Assuntos
Adenovírus Humanos/fisiologia , Antígenos CD/fisiologia , Glicoproteínas de Membrana/fisiologia , Receptores Virais/fisiologia , Adenovírus Humanos/classificação , Adenovírus Humanos/patogenicidade , Animais , Anticorpos Monoclonais , Antígenos CD/genética , Sequência de Bases , Antígenos CD55/genética , Antígenos CD55/fisiologia , Células CHO , Cálcio/metabolismo , Linhagem Celular , Proteína de Membrana Semelhante a Receptor de Coxsackie e Adenovirus , Cricetinae , DNA Recombinante/genética , Humanos , Manganês/metabolismo , Proteína Cofatora de Membrana , Glicoproteínas de Membrana/genética , Receptores Virais/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Transfecção , Tripsina/farmacologia
15.
J Virol ; 77(2): 1157-62, 2003 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-12502832

RESUMO

Unlike most adenovirus (Ad) serotypes, the species B Ads do not use the coxsackie-adenovirus receptor as an attachment receptor. The species B attachment receptor(s) has not yet been identified and is also poorly characterized. Species B Ads can be further divided into species B1 and B2 Ads, and these display different organ tropisms, suggesting a difference in receptor usage. We have studied the receptor interactions of the species B1 serotypes 3p and 7p and the species B2 serotypes 11p and 35 and characterized the properties of the species B receptor(s). Reciprocal blocking experiments using unlabeled Ad11p or Ad3p virions to block the binding to A549 cells of (35)S-labeled 3p, 7p, 11p, and 35 showed that only Ad11p virions efficiently blocked the binding of all the species B Ads studied (> or =70%). Thus, there is apparently a common species B Ad receptor (sBAR). However, Ad3p virions only partially (< or =30%) blocked the binding of Ad11p and Ad35 to A549 cells. Binding experiments after trypsin treatment of the cells confirmed that the species B2 serotypes address at least two different receptors on A549 and J82 cells, since sBAR is trypsin sensitive but the species B2 Ad receptor (sB2AR) is not. Both receptors are proteins or glycoproteins, since binding of all species B serotypes was abolished after proteinase K or subtilisin treatment of A549 or J82 cells. Furthermore, binding of the species B serotypes to sBAR was abolished with EDTA and restored with Ca(2+), whereas the binding of Ad11p and Ad35 to SB2AR was independent of divalent cations.


Assuntos
Adenoviridae/metabolismo , Receptores Virais/metabolismo , Cálcio/metabolismo , Humanos , Neuraminidase/farmacologia , Especificidade da Espécie , Células Tumorais Cultivadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...