Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 120(34): e2301301120, 2023 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-37585469

RESUMO

The auditory organ of Corti is comprised of only two major cell types-the mechanosensory hair cells and their associated supporting cells-both specified from a single pool of prosensory progenitors in the cochlear duct. Here, we show that competence to respond to Atoh1, a transcriptional master regulator necessary and sufficient for induction of mechanosensory hair cells, is established in the prosensory progenitors between E12.0 and 13.5. The transition to the competent state is rapid and is associated with extensive remodeling of the epigenetic landscape controlled by the SoxC group of transcription factors. Conditional loss of Sox4 and Sox11-the two homologous family members transiently expressed in the inner ear at the time of competence establishment-blocks the ability of prosensory progenitors to differentiate as hair cells. Mechanistically, we show that Sox4 binds to and establishes accessibility of early sensory lineage-specific regulatory elements, including ones associated with Atoh1 and its direct downstream targets. Consistent with these observations, overexpression of Sox4 or Sox11 prior to developmental establishment of competence precociously induces hair cell differentiation in the cochlear progenitors. Further, reintroducing Sox4 or Sox11 expression restores the ability of postnatal supporting cells to differentiate as hair cells in vitro and in vivo. Our findings demonstrate the pivotal role of SoxC family members as agents of epigenetic and transcriptional changes necessary for establishing competence for sensory receptor differentiation in the inner ear.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos , Fatores de Transcrição SOXC , Animais , Fatores de Transcrição SOXC/genética , Fatores de Transcrição SOXC/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Cóclea/metabolismo , Células Ciliadas Auditivas/metabolismo , Diferenciação Celular , Fatores de Transcrição/metabolismo , Epigênese Genética , Órgão Espiral , Regulação da Expressão Gênica no Desenvolvimento , Mamíferos/metabolismo
2.
Proc Natl Acad Sci U S A ; 120(33): e2300839120, 2023 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-37549271

RESUMO

Mammalian hair cells do not functionally regenerate in adulthood but can regenerate at embryonic and neonatal stages in mice by direct transdifferentiation of neighboring supporting cells into new hair cells. Previous work showed loss of transdifferentiation potential of supporting cells is in part due to H3K4me1 enhancer decommissioning of the hair cell gene regulatory network during the first postnatal week. However, inhibiting this decommissioning only partially preserves transdifferentiation potential. Therefore, we explored other repressive epigenetic modifications that may be responsible for this loss of plasticity. We find supporting cells progressively accumulate DNA methylation at promoters of developmentally regulated hair cell genes. Specifically, DNA methylation overlaps with binding sites of Atoh1, a key transcription factor for hair cell fate. We further show that DNA hypermethylation replaces H3K27me3-mediated repression of hair cell genes in mature supporting cells, and is accompanied by progressive loss of chromatin accessibility, suggestive of facultative heterochromatin formation. Another subset of hair cell loci is hypermethylated in supporting cells, but not in hair cells. Ten-eleven translocation (TET) enzyme-mediated demethylation of these hypermethylated sites is necessary for neonatal supporting cells to transdifferentiate into hair cells. We also observe changes in chromatin accessibility of supporting cell subtypes at the single-cell level with increasing age: Gene programs promoting sensory epithelium development loses chromatin accessibility, in favor of gene programs that promote physiological maturation and function of the cochlea. We also find chromatin accessibility is partially recovered in a chronically deafened mouse model, which holds promise for future translational efforts in hearing restoration.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos , Metilação de DNA , Animais , Camundongos , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Cóclea/metabolismo , Regeneração/genética , Cromatina/metabolismo , Mamíferos/genética
3.
Elife ; 122023 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-36598134

RESUMO

A major cause of human deafness and vestibular dysfunction is permanent loss of the mechanosensory hair cells of the inner ear. In non-mammalian vertebrates such as zebrafish, regeneration of missing hair cells can occur throughout life. While a comparative approach has the potential to reveal the basis of such differential regenerative ability, the degree to which the inner ears of fish and mammals share common hair cells and supporting cell types remains unresolved. Here, we perform single-cell RNA sequencing of the zebrafish inner ear at embryonic through adult stages to catalog the diversity of hair cells and non-sensory supporting cells. We identify a putative progenitor population for hair cells and supporting cells, as well as distinct hair and supporting cell types in the maculae versus cristae. The hair cell and supporting cell types differ from those described for the lateral line system, a distributed mechanosensory organ in zebrafish in which most studies of hair cell regeneration have been conducted. In the maculae, we identify two subtypes of hair cells that share gene expression with mammalian striolar or extrastriolar hair cells. In situ hybridization reveals that these hair cell subtypes occupy distinct spatial domains within the three macular organs, the utricle, saccule, and lagena, consistent with the reported distinct electrophysiological properties of hair cells within these domains. These findings suggest that primitive specialization of spatially distinct striolar and extrastriolar hair cells likely arose in the last common ancestor of fish and mammals. The similarities of inner ear cell type composition between fish and mammals validate zebrafish as a relevant model for understanding inner ear-specific hair cell function and regeneration.


Assuntos
Orelha Interna , Peixe-Zebra , Animais , Humanos , Peixe-Zebra/genética , Transcriptoma , Células Ciliadas Auditivas/fisiologia , Células Ciliadas Auditivas Internas , Mamíferos/genética
4.
Aging Cell ; 22(2): e13773, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36638270

RESUMO

Epigenetic mechanisms guiding articular cartilage regeneration and age-related disease such as osteoarthritis (OA) are poorly understood. STAT3 is a critical age-patterned transcription factor highly active in fetal and OA chondrocytes, but the context-specific role of STAT3 in regulating the epigenome of cartilage cells remain elusive. In this study, DNA methylation profiling was performed across human chondrocyte ontogeny to build an epigenetic clock and establish an association between CpG methylation and human chondrocyte age. Exposure of adult chondrocytes to a small molecule STAT3 agonist decreased DNA methylation, while genetic ablation of STAT3 in fetal chondrocytes induced global hypermethylation. CUT&RUN assay and subsequent transcriptional validation revealed DNA methyltransferase 3 beta (DNMT3B) as one of the putative STAT3 targets in chondrocyte development and OA. Functional assessment of human OA chondrocytes showed the acquisition of progenitor-like immature phenotype by a significant subset of cells. Finally, conditional deletion of Stat3 in cartilage cells increased DNMT3B expression in articular chondrocytes in the knee joint in vivo and resulted in a more prominent OA progression in a post-traumatic OA (PTOA) mouse model induced by destabilization of the medial meniscus (DMM). Taken together these data reveal a novel role for STAT3 in regulating DNA methylation in cartilage development and disease. Our findings also suggest that elevated levels of active STAT3 in OA chondrocytes may indicate an intrinsic attempt of the tissue to regenerate by promoting a progenitor-like phenotype. However, it is likely that chronic activation of this pathway, induced by IL-6 cytokines, is detrimental and leads to tissue degeneration.


Assuntos
Cartilagem Articular , Osteoartrite , Camundongos , Animais , Humanos , Condrócitos/metabolismo , Células Cultivadas , Osteoartrite/genética , Osteoartrite/metabolismo , Cartilagem Articular/metabolismo , Epigênese Genética , Metilação de DNA/genética , Fator de Transcrição STAT3/genética , Fator de Transcrição STAT3/metabolismo
5.
Elife ; 112022 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-36445327

RESUMO

Reprogramming of the cochlea with hair-cell-specific transcription factors such as ATOH1 has been proposed as a potential therapeutic strategy for hearing loss. ATOH1 expression in the developing cochlea can efficiently induce hair cell regeneration but the efficiency of hair cell reprogramming declines rapidly as the cochlea matures. We developed Cre-inducible mice to compare hair cell reprogramming with ATOH1 alone or in combination with two other hair cell transcription factors, GFI1 and POU4F3. In newborn mice, all transcription factor combinations tested produced large numbers of cells with the morphology of hair cells and rudimentary mechanotransduction properties. However, 1 week later, only a combination of ATOH1, GFI1 and POU4F3 could reprogram non-sensory cells of the cochlea to a hair cell fate, and these new cells were less mature than cells generated by reprogramming 1 week earlier. We used scRNA-seq and combined scRNA-seq and ATAC-seq to suggest at least two impediments to hair cell reprogramming in older animals. First, hair cell gene loci become less epigenetically accessible in non-sensory cells of the cochlea with increasing age. Second, signaling from hair cells to supporting cells, including Notch signaling, can prevent reprogramming of many supporting cells to hair cells, even with three hair cell transcription factors. Our results shed light on the molecular barriers that must be overcome to promote hair cell regeneration in the adult cochlea.


Assuntos
Reprogramação Celular , Células Ciliadas Auditivas Internas , Mecanotransdução Celular , Animais , Camundongos , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Proteínas de Ligação a DNA/genética , Epigênese Genética , Proteínas de Homeodomínio , Transdução de Sinais , Fator de Transcrição Brn-3C/genética , Fatores de Transcrição/genética , Células Ciliadas Auditivas Internas/citologia
6.
Front Mol Neurosci ; 15: 1013383, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36311033

RESUMO

Sensory hair cell death caused by the ototoxic side effects of many clinically used drugs leads to permanent sensorineural hearing loss in patients. Aminoglycoside antibiotics are widely used and well-known for their ototoxicity, but the molecular mechanisms of aminoglycoside-induced hair cell death are not well understood. This creates challenges in our attempts to alleviate or prevent such adverse side effects. Here, we report a regulatory role of CDK2 in aminoglycoside-induced hair cell death. Utilizing organotypic cultures of cochleae from neonatal mice, we show that blocking CDK2 activity by either pharmaceutical inhibition or by Cdk2 gene knockout protects hair cells against the ototoxicity of gentamicin-one of the most commonly used aminoglycoside antibiotics-by interfering with intrinsic programmed cell death processes. Specifically, we show that CDK2 inhibition delays the collapse of mitochondria and the activation of a caspase cascade. Furthermore, at the molecular level, inhibition of CDK2 activity influences proapoptotic JNK signaling by reducing the protein level of c-Jun and suppressing the gentamicin-induced upregulation of c-Jun target genes Jun and Bim. Our in vivo studies reveal that Cdk2 gene knockout animals are significantly less sensitive to gentamicin ototoxicity compared to wild-type littermates. Altogether, our work ascertains the non-cell cycle role of CDK2 in regulating aminoglycoside-induced hair cell apoptosis and sheds lights on new potential strategies for hearing protection against ototoxicity.

7.
Sci Rep ; 12(1): 7793, 2022 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-35551236

RESUMO

GFI1 is a zinc finger transcription factor that is necessary for the differentiation and survival of hair cells in the cochlea. Deletion of Gfi1 in mice significantly reduces the expression of hundreds of hair cell genes: this is a surprising result, as GFI1 normally acts as a transcriptional repressor by recruiting histone demethylases and methyltransferases to its targets. To understand the mechanisms by which GFI1 promotes hair cell differentiation, we used CUT&RUN to identify the direct targets of GFI1 and ATOH1 in hair cells. We found that GFI1 regulates hair cell differentiation in two distinct ways-first, GFI1 and ATOH1 can bind to the same regulatory elements in hair cell genes, but while ATOH1 directly binds its target DNA motifs in many of these regions, GFI1 does not. Instead, it appears to enhance ATOH1's transcriptional activity by acting as part of a complex in which it does not directly bind DNA. Second, GFI1 can act in its more typical role as a direct, DNA-binding transcriptional repressor in hair cells; here it represses non-hair cell genes, including many neuronal genes. Together, our results illuminate the function of GFI1 in hair cell development and hair cell reprogramming strategies.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos , Fatores de Transcrição , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Diferenciação Celular/genética , DNA/genética , Proteínas de Ligação a DNA/genética , Cabelo/metabolismo , Camundongos , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
8.
Dev Cell ; 56(17): 2471-2485.e5, 2021 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-34331868

RESUMO

Adult mammalian tissues such as heart, brain, retina, and the sensory structures of the inner ear do not effectively regenerate, although a latent capacity for regeneration exists at embryonic and perinatal times. We explored the epigenetic basis for this latent regenerative potential in the mouse inner ear and its rapid loss during maturation. In perinatal supporting cells, whose fate is maintained by Notch-mediated lateral inhibition, the hair cell enhancer network is epigenetically primed (H3K4me1) but silenced (active H3K27 de-acetylation and trimethylation). Blocking Notch signaling during the perinatal period of plasticity rapidly eliminates epigenetic silencing and allows supporting cells to transdifferentiate into hair cells. Importantly, H3K4me1 priming of the hair cell enhancers in supporting cells is removed during the first post-natal week, coinciding with the loss of transdifferentiation potential. We hypothesize that enhancer decommissioning during cochlear maturation contributes to the failure of hair cell regeneration in the mature organ of Corti.


Assuntos
Diferenciação Celular/fisiologia , Células Ciliadas Auditivas/metabolismo , Receptores Notch/metabolismo , Regeneração/fisiologia , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Transdiferenciação Celular/genética , Transdiferenciação Celular/fisiologia , Epigênese Genética/genética , Epigênese Genética/fisiologia , Células Ciliadas Auditivas/citologia , Camundongos Transgênicos , Sequências Reguladoras de Ácido Nucleico/genética
9.
Proc Natl Acad Sci U S A ; 118(29)2021 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-34266958

RESUMO

During embryonic development, hierarchical cascades of transcription factors interact with lineage-specific chromatin structures to control the sequential steps in the differentiation of specialized cell types. While examples of transcription factor cascades have been well documented, the mechanisms underlying developmental changes in accessibility of cell type-specific enhancers remain poorly understood. Here, we show that the transcriptional "master regulator" ATOH1-which is necessary for the differentiation of two distinct mechanoreceptor cell types, hair cells in the inner ear and Merkel cells of the epidermis-is unable to access much of its target enhancer network in the progenitor populations of either cell type when it first appears, imposing a block to further differentiation. This block is overcome by a feed-forward mechanism in which ATOH1 first stimulates expression of POU4F3, which subsequently acts as a pioneer factor to provide access to closed ATOH1 enhancers, allowing hair cell and Merkel cell differentiation to proceed. Our analysis also indicates the presence of both shared and divergent ATOH1/POU4F3-dependent enhancer networks in hair cells and Merkel cells. These cells share a deep developmental lineage relationship, deriving from their common epidermal origin, and suggesting that this feed-forward mechanism preceded the evolutionary divergence of these very different mechanoreceptive cell types.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Células Ciliadas Auditivas/metabolismo , Proteínas de Homeodomínio/metabolismo , Mecanorreceptores/metabolismo , Fator de Transcrição Brn-3C/metabolismo , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Diferenciação Celular , Cóclea/metabolismo , Elementos Facilitadores Genéticos , Epigênese Genética , Células Ciliadas Auditivas/citologia , Proteínas de Homeodomínio/genética , Humanos , Células de Merkel/metabolismo , Camundongos , Fator de Transcrição Brn-3C/genética
10.
Nat Commun ; 12(1): 3100, 2021 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-34035288

RESUMO

Hippo signaling is an evolutionarily conserved pathway that restricts growth and regeneration predominantly by suppressing the activity of the transcriptional coactivator Yap. Using a high-throughput phenotypic screen, we identified a potent and non-toxic activator of Yap. In vitro kinase assays show that the compound acts as an ATP-competitive inhibitor of Lats kinases-the core enzymes in Hippo signaling. The substance prevents Yap phosphorylation and induces proliferation of supporting cells in the murine inner ear, murine cardiomyocytes, and human Müller glia in retinal organoids. RNA sequencing indicates that the inhibitor reversibly activates the expression of transcriptional Yap targets: upon withdrawal, a subset of supporting-cell progeny exits the cell cycle and upregulates genes characteristic of sensory hair cells. Our results suggest that the pharmacological inhibition of Lats kinases may promote initial stages of the proliferative regeneration of hair cells, a process thought to be permanently suppressed in the adult mammalian inner ear.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Proliferação de Células/efeitos dos fármacos , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Bibliotecas de Moléculas Pequenas/farmacologia , Proteínas Supressoras de Tumor/antagonistas & inibidores , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Linhagem Celular , Linhagem Celular Tumoral , Proliferação de Células/genética , Células Ependimogliais/citologia , Células Ependimogliais/efeitos dos fármacos , Células Ependimogliais/metabolismo , Células HEK293 , Células Ciliadas Auditivas Internas/citologia , Células Ciliadas Auditivas Internas/efeitos dos fármacos , Células Ciliadas Auditivas Internas/metabolismo , Humanos , Camundongos Knockout , Camundongos Transgênicos , Miócitos Cardíacos/citologia , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Proteínas Supressoras de Tumor/metabolismo , Proteínas de Sinalização YAP
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA