Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 23(6)2023 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-36992018

RESUMO

Agricultural sensors are essential technologies for smart agriculture, which can transform non-electrical physical quantities such as environmental factors. The ecological elements inside and outside of plants and animals are converted into electrical signals for control system recognition, providing a basis for decision-making in smart agriculture. With the rapid development of smart agriculture in China, agricultural sensors have ushered in opportunities and challenges. Based on a literature review and data statistics, this paper analyzes the market prospects and market scale of agricultural sensors in China from four perspectives: field farming, facility farming, livestock and poultry farming and aquaculture. The study further predicts the demand for agricultural sensors in 2025 and 2035. The results reveal that China's sensor market has a good development prospect. However, the paper garnered the key challenges of China's agricultural sensor industry, including a weak technical foundation, poor enterprise research capacity, high importation of sensors and a lack of financial support. Given this, the agricultural sensor market should be comprehensively distributed in terms of policy, funding, expertise and innovative technology. In addition, this paper highlighted integrating the future development direction of China's agricultural sensor technology with new technologies and China's agricultural development needs.

2.
Heliyon ; 9(3): e14373, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36950642

RESUMO

Hydrogen gas will be an essential energy carrier for global energy systems in the future. However, non-renewable sources account for 96% of the production. Food wastes have high hydrogen generation potential, which can positively influence global production and reduce greenhouse gas (GHG) emissions. The study evaluates the potential of food waste hydrogen-based power generation through biogas steam reforming and its environmental and economic impact in major Ghanaian cities. The results highlight that the annual hydrogen generation in Kumasi had the highest share of 40.73 kt, followed by Accra with 31.62 kt, while the least potential was in Tamale (3.41 kt). About 2073.38 kt was generated in all the major cities. Hydrogen output is predicted to increase from 54.61 kt in 2007 to 119.80 kt by 2030. Kumasi produced 977.54 kt of hydrogen throughout the 24-year period, followed by Accra with 759.76 kt, Secondi-Takoradi with 255.23 kt, and Tamale with 81.85 kt. According to the current study, Kumasi had the largest percentage contribution of hydrogen (47.15%), followed by Accra (36.60%), Secondi-Takoradi (12.31%), and Tamale (3.95%). The annual power generation potential in Kumasi and Accra was 73.24 GWh and 56.85 GWh. Kumasi and Accra could offset 8.19% and 6.36% of Ghana's electricity consumption. The total electricity potential of 3728.35 GWh could displace 17.37% of Ghana's power consumption. This electricity generated had a fossil diesel displacement capacity of 1125.90 ML and could reduce GHG emissions by 3060.20 kt CO2 eq. Based on the findings, the total GHG savings could offset 8.13% of Ghana's carbon emissions. The cost of power generation from hydrogen is $ 0.074/kWh with an annual positive net present value of $ 658.80 million and a benefit-to-cost ratio of 3.43. The study lays the foundation and opens policy windows for sustainable hydrogen power generation in Ghana and other African countries.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA