Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Alzheimers Dis ; 82(s1): S215-S226, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33185606

RESUMO

BACKGROUND: Severe traumatic brain injury (TBI), an important risk factor for Alzheimer's disease, induces long-term hippocampal damage and hyperexcitability. On the other hand, studies support that propylparaben (PPB) induces hippocampal neuroprotection in neurodegenerative diseases. OBJECTIVE: Experiments were designed to evaluate the effects of subchronic treatment with PPB on TBI-induced changes in the hippocampus of rats. METHODS: Severe TBI was induced using the lateral fluid percussion model. Subsequently, rats received subchronic administration with PPB (178 mg/kg, TBI+PPB) or vehicle (TBI+PEG) daily for 5 days. The following changes were examined during the experimental procedure: sensorimotor dysfunction, changes in hippocampal excitability, as well as neuronal damage and volume. RESULTS: TBI+PEG group showed sensorimotor dysfunction (p < 0.001), hyperexcitability (64.2%, p < 0.001), and low neuronal preservation ipsi- and contralateral to the trauma. Magnetic resonance imaging (MRI) analysis revealed lower volume (17.2%; p < 0.01) and great damage to the ipsilateral hippocampus. TBI+PPB group showed sensorimotor dysfunction that was partially reversed 30 days after trauma. This group showed hippocampal excitability and neuronal preservation similar to the control group. However, MRI analysis revealed lower hippocampal volume (p < 0.05) when compared with the control group. CONCLUSION: The present study confirms that post-TBI subchronic administration with PPB reduces the long-term consequences of trauma in the hippocampus. Implications of PPB as a neuroprotective strategy to prevent the development of Alzheimer's disease as consequence of TBI are discussed.


Assuntos
Lesões Encefálicas Traumáticas/diagnóstico por imagem , Lesões Encefálicas Traumáticas/tratamento farmacológico , Hipocampo/diagnóstico por imagem , Doenças Neurodegenerativas/diagnóstico por imagem , Doenças Neurodegenerativas/prevenção & controle , Parabenos/administração & dosagem , Animais , Hipocampo/efeitos dos fármacos , Masculino , Conservantes Farmacêuticos/administração & dosagem , Ratos , Fatores de Tempo
2.
J Neurotrauma ; 37(23): 2595-2603, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-32484040

RESUMO

Severe traumatic brain injury (TBI) results in significant functional disturbances in the hippocampus. Studies support that sodium cromoglycate (CG) induces neuroprotective effects. This study focused on investigating the effects of post-TBI subchronic administration of CG on hippocampal hyperexcitability and damage as well as on sensorimotor impairment in rats. In contrast to the control group (Sham+SS group), animals undergoing severe TBI (TBI+SS group) showed sensorimotor dysfunction over the experimental post-TBI period (day 2, 55%, p < 0.001; day 23, 39.5%, p < 0.001; day 30, 38.6%, p < 0.01). On day 30 post-TBI, TBI+SS group showed neuronal hyperexcitability (63.3%, p < 0.01). The hippocampus ipsilateral to the injury showed volume reduction (14.4%, p < 0.001) with a volume of damage of 0.15 ± 0.09 mm3. These changes were associated with neuronal loss in the dentate gyrus (ipsilateral, 33%, p < 0.05); hilus (ipsilateral, 77%, p < 0.001; contralateral, 51%, p < 0.001); Cornu Ammonis (CA)1 (ipsilateral, 40%, p < 0.01), and CA3 (ipsilateral, 52%, p < 0.001; contralateral, 34%, p < 0.01). Animals receiving subchronic treatment with CG (50 mg/kg, s.c. daily for 10 days) after TBI (TBI+CG group) displayed a sensorimotor dysfunction less evident than that of the TBI+SS group (p < 0.001). Their hippocampal excitability was similar to that of the Sham+SS group (p = 0.21). The TBI+CG group presented hippocampal volume reduction (12.7%, p = 0.94) and damage (0.10 ± 0.03 mm3, p > 0.99) similar to the TBI+SS group. However, their hippocampal neuronal preservation was similar to that of the Sham+SS group. These results indicate that CG represents an appropriate and novel pharmacological strategy to reduce the long-term sensorimotor impairment and hippocampal damage and hyperexcitability that result as consequences of severe TBI.


Assuntos
Lesões Encefálicas Traumáticas/patologia , Cromolina Sódica/farmacologia , Hipocampo/efeitos dos fármacos , Hipocampo/patologia , Fármacos Neuroprotetores/farmacologia , Animais , Masculino , Atividade Motora/efeitos dos fármacos , Ratos , Ratos Wistar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA