Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cancers (Basel) ; 16(2)2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38275860

RESUMO

Penile squamous cell carcinoma (PSCC) is a rare and deadly malignancy. Therapeutic advances have been stifled by a poor understanding of disease biology. Specifically, the immune microenvironment is an underexplored component in PSCC and the activity of immune checkpoint inhibitors observed in a subset of patients suggests immune escape may play an important role in tumorigenesis. Herein, we explored for the first time the immune microenvironment of 57 men with PSCC and how it varies with the presence of human papillomavirus (HPV) infection and across tumor stages using multiplex immunofluorescence of key immune cell markers. We observed an increase in the density of immune effector cells in node-negative tumors and a progressive rise in inhibitory immune players such as type 2 macrophages and upregulation of the PD-L1 checkpoint in men with N1 and N2-3 disease. There were no differences in immune cell densities with HPV status.

2.
bioRxiv ; 2023 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-38014063

RESUMO

Background: Immunotherapy (IO) has improved survival for patients with advanced clear cell renal cell carcinoma (ccRCC), but resistance to therapy develops in most patients. We use cellular-resolution spatial transcriptomics in patients with IO naïve and IO exposed primary ccRCC tumors to better understand IO resistance. Spatial molecular imaging (SMI) was obtained for tumor and adjacent stroma samples. Spatial gene set enrichment analysis (GSEA) and autocorrelation (coupling with high expression) of ligand-receptor transcript pairs were assessed. Multiplex immunofluorescence (mIF) validation was used for significant autocorrelative findings and the cancer genome atlas (TCGA) and the clinical proteomic tumor analysis consortium (CPTAC) databases were queried to assess bulk RNA expression and proteomic correlates. Results: 21 patient samples underwent SMI. Viable tumors following IO harbored more stromal CD8+ T cells and neutrophils than IO naïve tumors. YES1 was significantly upregulated in IO exposed tumor cells. The epithelial-mesenchymal transition pathway was enriched on spatial GSEA and the associated transcript pair COL4A1-ITGAV had significantly higher autocorrelation in the stroma. Fibroblasts, tumor cells, and endothelium had the relative highest expression. More integrin αV+ cells were seen in IO exposed stroma on mIF validation. Compared to other cancers in TCGA, ccRCC tumors have the highest expression of both COL4A1 and ITGAV. In CPTAC, collagen IV protein was more abundant in advanced stages of disease. Conclusions: On spatial transcriptomics, COL4A1 and ITGAV were more autocorrelated in IO-exposed stroma compared to IO-naïve tumors, with high expression amongst fibroblasts, tumor cells, and endothelium. Integrin represents a potential therapeutic target in IO treated ccRCC.

3.
iScience ; 26(4): 106443, 2023 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-37070068

RESUMO

Advances in the understanding of the tumor microenvironment have led to development of immunotherapeutic strategies, such as chimeric antigen receptor T cells (CAR-Ts). However, despite success in blood malignancies, CAR-T therapies in solid tumors have been hampered by their restricted infiltration. Here, we used our understanding of early cytotoxic lymphocyte infiltration of human lymphocytes in solid tumors in vivo to investigate the receptors in normal, adjacent, and tumor tissues of primary non-small-cell lung cancer specimens. We found that CX3CL1-CX3CR1 reduction restricts cytotoxic cells from the solid-tumor bed, contributing to tumor escape. Based on this, we designed a CAR-T construct using the well-established natural killer group 2, member D (NKG2D) CAR-T expression together with overexpression of CX3CR1 to promote their infiltration. These CAR-Ts infiltrate tumors at higher rates than control-activated T cells or IL-15-overexpressing NKG2D CAR-Ts. This construct also had similar functionality in a liver-cancer model, demonstrating potential efficacy in other solid malignancies.

4.
Cancer Discov ; 12(5): 1294-1313, 2022 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-35247891

RESUMO

ABSTRACT: Cutaneous T-cell lymphoma (CTCL) is a rare cancer of skin-homing T cells. A subgroup of patients develops large cell transformation with rapid progression to an aggressive lymphoma. Here, we investigated the transformed CTCL (tCTCL) tumor ecosystem using integrative multiomics spanning whole-exome sequencing (WES), single-cell RNA sequencing, and immune profiling in a unique cohort of 56 patients. WES of 70 skin biopsies showed high tumor mutation burden, UV signatures that are prognostic for survival, exome-based driver events, and most recurrently mutated pathways in tCTCL. Single-cell profiling of 16 tCTCL skin biopsies identified a core oncogenic program with metabolic reprogramming toward oxidative phosphorylation (OXPHOS), cellular plasticity, upregulation of MYC and E2F activities, and downregulation of MHC I suggestive of immune escape. Pharmacologic perturbation using OXPHOS and MYC inhibitors demonstrated potent antitumor activities, whereas immune profiling provided in situ evidence of intercellular communications between malignant T cells expressing macrophage migration inhibitory factor and macrophages and B cells expressing CD74. SIGNIFICANCE: Our study contributes a key resource to the community with the largest collection of tCTCL biopsies that are difficult to obtain. The multiomics data herein provide the first comprehensive compendium of genomic alterations in tCTCL and identify potential prognostic signatures and novel therapeutic targets for an incurable T-cell lymphoma. This article is highlighted in the In This Issue feature, p. 1171.


Assuntos
Linfoma Cutâneo de Células T , Neoplasias Cutâneas , Transformação Celular Neoplásica , Ecossistema , Genômica , Humanos , Linfoma Cutâneo de Células T/tratamento farmacológico , Linfoma Cutâneo de Células T/genética , Neoplasias Cutâneas/tratamento farmacológico , Neoplasias Cutâneas/genética , Neoplasias Cutâneas/metabolismo
5.
PLoS Comput Biol ; 18(3): e1009900, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35235563

RESUMO

New technologies, such as multiplex immunofluorescence microscopy (mIF), are being developed and used for the assessment and visualization of the tumor immune microenvironment (TIME). These assays produce not only an estimate of the abundance of immune cells in the TIME, but also their spatial locations. However, there are currently few approaches to analyze the spatial context of the TIME. Therefore, we have developed a framework for the spatial analysis of the TIME using Ripley's K, coupled with a permutation-based framework to estimate and measure the departure from complete spatial randomness (CSR) as a measure of the interactions between immune cells. This approach was then applied to epithelial ovarian cancer (EOC) using mIF collected on intra-tumoral regions of interest (ROIs) and tissue microarrays (TMAs) from 160 high-grade serous ovarian carcinoma patients in the African American Cancer Epidemiology Study (AACES) (94 subjects on TMAs resulting in 263 tissue cores; 93 subjects with 260 ROIs; 27 subjects with both TMA and ROI data). Cox proportional hazard models were constructed to determine the association of abundance and spatial clustering of tumor-infiltrating lymphocytes (CD3+), cytotoxic T-cells (CD8+CD3+), and regulatory T-cells (CD3+FoxP3+) with overall survival. Analysis was done on TMA and ROIs, treating the TMA data as validation of the findings from the ROIs. We found that EOC patients with high abundance and low spatial clustering of tumor-infiltrating lymphocytes and T-cell subsets in their tumors had the best overall survival. Additionally, patients with EOC tumors displaying high co-occurrence of cytotoxic T-cells and regulatory T-cells had the best overall survival. Grouping women with ovarian cancer based on both cell abundance and spatial contexture showed better discrimination for survival than grouping ovarian cancer cases only by cell abundance. These findings underscore the prognostic importance of evaluating not only immune cell abundance but also the spatial contexture of the immune cells in the TIME. In conclusion, the application of this spatial analysis framework to the study of the TIME could lead to the identification of immune content and spatial architecture that could aid in the determination of patients that are likely to respond to immunotherapies.


Assuntos
Negro ou Afro-Americano , Neoplasias Ovarianas , Carcinoma Epitelial do Ovário/patologia , Análise por Conglomerados , Feminino , Humanos , Linfócitos do Interstício Tumoral , Neoplasias Ovarianas/patologia , Microambiente Tumoral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...