Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 67
Filtrar
2.
Exp Hematol Oncol ; 13(1): 38, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38581035

RESUMO

Rhabdomyosarcoma (RMS), such as other childhood tumors, has witnessed treatment advancements in recent years. However, high-risk patients continue to face poor survival rates, often attributed to the presence of the PAX3/7-FOXO1 fusion proteins, which has been associated with metastasis and treatment resistance. Despite efforts to directly target these chimeric proteins, clinical success remains elusive. In this study, the main aim was to address this challenge by investigating regulators of FOXO1. Specifically, we focused on TRIB3, a potential regulator of the fusion protein in RMS. Our findings revealed a prominent TRIB3 expression in RMS tumors, highlighting its correlation with the presence of fusion protein. By conducting TRIB3 genetic inhibition experiments, we observed an impairment on cell proliferation. Notably, the knockdown of TRIB3 led to a decrease in PAX3-FOXO1 and its target genes at protein level, accompanied by a reduction in the activity of the Akt signaling pathway. Additionally, inducible silencing of TRIB3 significantly delayed tumor growth and improved overall survival in vivo. Based on our analysis, we propose that TRIB3 holds therapeutic potential for treating the most aggressive subtype of RMS. The findings herein reported contribute to our understanding of the underlying molecular mechanisms driving RMS progression and provide novel insights into the potential use of TRIB3 as a therapeutic intervention for high-risk RMS patients.

4.
Cancers (Basel) ; 15(6)2023 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-36980521

RESUMO

The identification of novel therapeutic targets for specific cancer molecular subtypes is crucial for the development of precision oncology. In the last few years, CRISPR/Cas9 screens have accelerated the discovery and validation of new targets associated with different tumor types, mutations, and fusions. However, there are still many cancer vulnerabilities associated with specific molecular features that remain to be explored. Here, we used data from CRISPR/Cas9 screens in 954 cancer cell lines to identify gene dependencies associated with 16 common cancer genomic amplifications. We found that high-copy-number genomic amplifications generate multiple collateral dependencies within the amplified region in most cases. Further, to prioritize candidate targets for each chromosomal region amplified, we integrated gene dependency parameters with both druggability data and subcellular location. Finally, analysis of the relationship between gene expression and gene dependency led to the identification of genes, the expression of which may constitute predictive biomarkers of dependency. In conclusion, our study provides a set of druggable targets specific for each amplification, opening the possibility to specifically target amplified tumors on this basis.

5.
Mol Oncol ; 17(5): 718-721, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36840349

RESUMO

The development of immunotherapies for neuroblastoma remains challenging owing to the low immunogenicity of neuroblastoma cells, as reflected by the low expression of one of the main triggers of immune recognition, the major histocompatibility complex class I (MHC-I). Cornel et al. showed that epigenetic modulation of neuroblastoma cells with a histone deacetylase inhibitor can boost the expression of major histocompatibility complex class I, among other immune receptors, priming their recognition by T- and natural killer cells. By leveraging the developmentally related aberrant epigenetic landscapes of neuroblastoma, these discoveries pave the way to overcome a major limitation in the field of neuroblastoma immunotherapy.


Assuntos
Neuroblastoma , Humanos , Neuroblastoma/genética , Neuroblastoma/terapia , Imunoterapia , Células Matadoras Naturais , Inibidores de Histona Desacetilases/farmacologia , Inibidores de Histona Desacetilases/uso terapêutico , Epigênese Genética
6.
Cancers (Basel) ; 15(3)2023 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-36765685

RESUMO

Aberrant activation of the Hedgehog (Hh) signalling pathway is known to play an oncogenic role in a wide range of cancers; in the particular case of rhabdomyosarcoma, this pathway has been demonstrated to be an important player for both oncogenesis and cancer progression. In this review, after a brief description of the pathway and the characteristics of its molecular components, we describe, in detail, the main activation mechanisms that have been found in cancer, including ligand-dependent, ligand-independent and non-canonical activation. In this context, the most studied inhibitors, i.e., SMO inhibitors, have shown encouraging results for the treatment of basal cell carcinoma and medulloblastoma, both tumour types often associated with mutations that lead to the activation of the pathway. Conversely, SMO inhibitors have not fulfilled expectations in tumours-among them sarcomas-mostly associated with ligand-dependent Hh pathway activation. Despite the controversy existing regarding the results obtained with SMO inhibitors in these types of tumours, several compounds have been (or are currently being) evaluated in sarcoma patients. Finally, we discuss some of the reasons that could explain why, in some cases, encouraging preclinical data turned into disappointing results in the clinical setting.

7.
Methods Mol Biol ; 2595: 101-114, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36441457

RESUMO

MicroRNAs (miRNAs) are small non-coding RNAs that play essential roles in regulating gene expression at the post-transcriptional level, possibly at any level of the cellular physiology. Furthermore, their deregulation has been observed in a myriad of human diseases including cancer. Therefore, miRNA-based therapies are directed to inhibit the function of oncogenic miRNA or to restore the function of tumor-suppressive miRNAs. Here, we describe how to analyze miRNA levels after the transfection of miRNAs of interest using different transfection reagents or intravenous administration of miRNAs conjugated to lipid nanoparticles in cell lines and in mouse xenograft models.


Assuntos
MicroRNAs , Animais , Camundongos , Humanos , Xenoenxertos , MicroRNAs/genética , Reação em Cadeia da Polimerase em Tempo Real , Linhagem Celular , Modelos Animais de Doenças
8.
Cell Mol Life Sci ; 79(11): 546, 2022 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-36221013

RESUMO

The majority of current cancer therapies are aimed at reducing tumour growth, but there is lack of viable pharmacological options to reduce the formation of metastasis. This is a paradox, since more than 90% of cancer deaths are attributable to metastatic progression. Integrin alpha9 (ITGA9) has been previously described as playing an essential role in metastasis; however, little is known about the mechanism that links this protein to this process, being one of the less studied integrins. We have now deciphered the importance of ITGA9 in metastasis and provide evidence demonstrating its essentiality for metastatic dissemination in rhabdomyosarcoma and neuroblastoma. However, the most translational advance of this study is to reveal, for the first time, the possibility of reducing metastasis by pharmacological inhibition of ITGA9 with a synthetic peptide simulating a key interaction domain of ADAM proteins, in experimental metastasis models, not only in childhood cancers but also in a breast cancer model.


Assuntos
Neuroblastoma , Rabdomiossarcoma , Proteínas ADAM/metabolismo , Humanos , Cadeias alfa de Integrinas , Integrinas , Metástase Neoplásica , Neuroblastoma/tratamento farmacológico , Rabdomiossarcoma/tratamento farmacológico
9.
Mol Cancer ; 21(1): 175, 2022 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-36057593

RESUMO

BACKGROUND: Epigenetic programming during development is essential for determining cell lineages, and alterations in this programming contribute to the initiation of embryonal tumour development. In neuroblastoma, neural crest progenitors block their course of natural differentiation into sympathoadrenergic cells, leading to the development of aggressive and metastatic paediatric cancer. Research of the epigenetic regulators responsible for oncogenic epigenomic networks is crucial for developing new epigenetic-based therapies against these tumours. Mammalian switch/sucrose non-fermenting (mSWI/SNF) ATP-dependent chromatin remodelling complexes act genome-wide translating epigenetic signals into open chromatin states. The present study aimed to understand the contribution of mSWI/SNF to the oncogenic epigenomes of neuroblastoma and its potential as a therapeutic target. METHODS: Functional characterisation of the mSWI/SNF complexes was performed in neuroblastoma cells using proteomic approaches, loss-of-function experiments, transcriptome and chromatin accessibility analyses, and in vitro and in vivo assays. RESULTS: Neuroblastoma cells contain three main mSWI/SNF subtypes, but only BRG1-associated factor (BAF) complex disruption through silencing of its key structural subunits, ARID1A and ARID1B, impairs cell proliferation by promoting cell cycle blockade. Genome-wide chromatin remodelling and transcriptomic analyses revealed that BAF disruption results in the epigenetic repression of an extensive invasiveness-related expression program involving integrins, cadherins, and key mesenchymal regulators, thereby reducing adhesion to the extracellular matrix and the subsequent invasion in vitro and drastically inhibiting the initiation and growth of neuroblastoma metastasis in vivo. CONCLUSIONS: We report a novel ATPase-independent role for the BAF complex in maintaining an epigenomic program that allows neuroblastoma invasiveness and metastasis, urging for the development of new BAF pharmacological structural disruptors for therapeutic exploitation in metastatic neuroblastoma.


Assuntos
Cromatina , Neuroblastoma , Animais , Criança , Cromatina/genética , Montagem e Desmontagem da Cromatina , Proteínas Cromossômicas não Histona/genética , Proteínas Cromossômicas não Histona/metabolismo , Epigenômica , Humanos , Mamíferos/metabolismo , Neuroblastoma/genética , Proteômica
10.
Small ; 18(3): e2101959, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34786859

RESUMO

MicroRNAs (miRNAs) are small non-coding endogenous RNAs, which are attracting a growing interest as therapeutic molecules due to their central role in major diseases. However, the transformation of these biomolecules into drugs is limited due to their unstability in the bloodstream, caused by nucleases abundantly present in the blood, and poor capacity to enter cells. The conjugation of miRNAs to nanoparticles (NPs) could be an effective strategy for their clinical delivery. Herein, the engineering of non-liposomal lipid nanovesicles, named quatsomes (QS), for the delivery of miRNAs and other small RNAs into the cytosol of tumor cells, triggering a tumor-suppressive response is reported. The engineered pH-sensitive nanovesicles have controlled structure (unilamellar), size (<150 nm) and composition. These nanovesicles are colloidal stable (>24 weeks), and are prepared by a green, GMP compliant, and scalable one-step procedure, which are all unavoidable requirements for the arrival to the clinical practice of NP based miRNA therapeutics. Furthermore, QS protect miRNAs from RNAses and when injected intravenously, deliver them into liver, lung, and neuroblastoma xenografts tumors. These stable nanovesicles with tunable pH sensitiveness constitute an attractive platform for the efficient delivery of miRNAs and other small RNAs with therapeutic activity and their exploitation in the clinics.


Assuntos
MicroRNAs , Nanopartículas , Neoplasias , Humanos , Concentração de Íons de Hidrogênio , MicroRNAs/química , Nanopartículas/química , Neoplasias/tratamento farmacológico , Neoplasias/terapia
11.
Expert Opin Drug Discov ; 17(2): 167-179, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34807782

RESUMO

INTRODUCTION: Neuroblastoma is a cancer of the sympathetic nervous system that causes up to 15% of cancer-related deaths among children. Among the ~1,000 newly diagnosed cases per year in Europe, more than half are classified as high-risk, with a 5-year survival rate <50%. Current multimodal treatments have improved survival among these patients, but relapsed and refractory tumors remain a major therapeutic challenge. A number of new methodologies are paving the way for the development of more effective and safer therapies to ultimately improve outcomes for high-risk patients. AREAS COVERED: The authors provide a critical review on methodological advances aimed at providing new therapeutic opportunities for neuroblastoma patients, including preclinical models of human disease, generation of omics data to discover new therapeutic targets, and artificial intelligence-based technologies to implement personalized treatments. EXPERT OPINION: While survival of childhood cancer has improved over the past decades, progress has been uneven. Still, survival is dismal for some cancers, including high-risk neuroblastoma. Embracing new technologies (e.g. molecular profiling of tumors, 3D in vitro models, etc.), international collaborative efforts and the incorporation of new therapies (e.g. RNA-based therapies, epigenetic therapies, immunotherapy) will ultimately lead to more effective and safer therapies for these subgroups of neuroblastoma patients.


Assuntos
Inteligência Artificial , Neuroblastoma , Criança , Terapia Combinada , Humanos , Imunoterapia , Terapia de Alvo Molecular , Neuroblastoma/tratamento farmacológico , Neuroblastoma/patologia
12.
Cancers (Basel) ; 13(24)2021 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-34944822

RESUMO

About 70% of advanced-stage prostate cancer (PCa) patients will experience bone metastasis, which severely affects patients' quality of life and progresses to lethal PCa in most cases. Hence, understanding the molecular heterogeneity of PCa cell populations and the signaling pathways associated with bone tropism is crucial. For this purpose, we generated an animal model with high penetrance to metastasize to bone using an intracardiac percutaneous injection of PC3 cells to identify PCa metastasis-promoting factors. Using genomic high-throughput analysis we identified a miRNA signature involved in bone metastasis that also presents potential as a biomarker of PCa progression in human samples. In particular, the downregulation of miR-135b favored the incidence of bone metastases by significantly increasing PCa cells' migratory capacity. Moreover, the PLAG1, JAKMIP2, PDGFA, and VTI1b target genes were identified as potential mediators of miR-135b's role in the dissemination to bone. In this study, we provide a genomic signature involved in PCa bone growth, contributing to a better understanding of the mechanisms responsible for this process. In the future, our results could ultimately translate into promising new therapeutic targets for the treatment of lethal PCa.

13.
Int J Mol Sci ; 22(23)2021 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-34884726

RESUMO

The Wnt/ß-catenin signaling pathway plays a pivotal role during embryogenesis and its deregulation is a key mechanism in the origin and progression of several tumors. Wnt antagonists have been described as key modulators of Wnt/ß-catenin signaling in cancer, with Dickkopf-1 (DKK-1) being the most studied member of the DKK family. Although the therapeutic potential of DKK-1 inhibition has been evaluated in several diseases and malignancies, little is known in pediatric tumors. Only a few works have studied the genetic inhibition and function of DKK-1 in rhabdomyosarcoma. Here, for the first time, we report the analysis of the therapeutic potential of DKK-1 pharmaceutical inhibition in rhabdomyosarcoma, the most common soft tissue sarcoma in children. We performed DKK-1 inhibition via shRNA technology and via the chemical inhibitor WAY-2626211. Its inhibition led to ß-catenin activation and the modulation of focal adhesion kinase (FAK), with positive effects on in vitro expression of myogenic markers and a reduction in proliferation and invasion. In addition, WAY-262611 was able to impair survival of tumor cells in vivo. Therefore, DKK-1 could constitute a molecular target, which could lead to novel therapeutic strategies in RMS, especially in those patients with high DKK-1 expression.


Assuntos
Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Naftalenos/uso terapêutico , Piperidinas/uso terapêutico , Pirimidinas/uso terapêutico , Rabdomiossarcoma/tratamento farmacológico , Via de Sinalização Wnt/efeitos dos fármacos , beta Catenina/metabolismo , Animais , Estudos de Casos e Controles , Linhagem Celular Tumoral , Proteína-Tirosina Quinases de Adesão Focal/metabolismo , Humanos , Camundongos SCID , Terapia de Alvo Molecular , Músculos/metabolismo , Proteína MyoD/metabolismo , Miogenina/metabolismo , Naftalenos/farmacologia , Piperidinas/farmacologia , Pirimidinas/farmacologia , RNA Interferente Pequeno/uso terapêutico , Rabdomiossarcoma/etiologia , Rabdomiossarcoma/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
14.
Cancers (Basel) ; 13(19)2021 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-34638328

RESUMO

Neuroblastoma is a pediatric tumor of the peripheral nervous system that accounts for up to ~15% of all cancer-related deaths in children. Recently, it has become evident that epigenetic deregulation is a relevant event in pediatric tumors such as high-risk neuroblastomas, and a determinant for processes, such as cell differentiation blockade and sustained proliferation, which promote tumor progression and resistance to current therapies. Thus, a better understanding of epigenetic factors implicated in the aggressive behavior of neuroblastoma cells is crucial for the development of better treatments. In this study, we characterized the role of ZRF1, an epigenetic activator recruited to genes involved in the maintenance of the identity of neural progenitors. We combined analysis of patient sample expression datasets with loss- and gain-of-function studies on neuroblastoma cell lines. Functional analyses revealed that ZRF1 is functionally dispensable for those cellular functions related to cell differentiation, proliferation, migration, and invasion, and does not affect the cellular response to chemotherapeutic agents. However, we found that high levels of ZRF1 mRNA expression are associated to shorter overall survival of neuroblastoma patients, even when those patients with the most common molecular alterations used as prognostic factors are removed from the analyses, thereby suggesting that ZRF1 expression could be used as an independent prognostic factor in neuroblastoma.

16.
Pharmaceuticals (Basel) ; 14(8)2021 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-34451907

RESUMO

The Wnt signaling pathway regulates crucial aspects such as cell fate determination, cell polarity and organogenesis during embryonic development. Wnt pathway deregulation is a hallmark of several cancers such as lung, gastric and liver cancer, and has been reported to be altered in others. Despite the general agreement reached by the scientific community on the oncogenic potential of the central components of the pathway, the role of the antagonist proteins remains less clear. Deregulation of the pathway may be caused by overexpression or downregulation of a wide range of antagonist proteins. Although there is growing information related to function and regulation of Dickkopf (DKK) proteins, their pharmacological potential as cancer therapeutics still has not been fully developed. This review provides an update on the role of DKK proteins in cancer and possible potential as therapeutic targets for the treatment of cancer; available compounds in pre-clinical or clinical trials are also reviewed.

17.
Biomedicines ; 9(5)2021 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-34064518

RESUMO

Cancer is one of the leading causes of mortality worldwide due, in part, to limited success of some current therapeutic approaches. The clinical potential of many promising drugs is restricted by their systemic toxicity and lack of selectivity towards cancer cells, leading to insufficient drug concentration at the tumor site. To overcome these hurdles, we developed a novel drug delivery system based on polyurea/polyurethane nanocapsules (NCs) showing pH-synchronized amphoteric properties that facilitate their accumulation and selectivity into acidic tissues, such as tumor microenvironment. We have demonstrated that the anticancer drug used in this study, a hydrophobic anionophore named T21, increases its cytotoxic activity in acidic conditions when nanoencapsulated, which correlates with a more efficient cellular internalization. A biodistribution assay performed in mice has shown that the NCs are able to reach the tumor and the observed systemic toxicity of the free drug is significantly reduced in vivo when nanoencapsulated. Additionally, T21 antitumor activity is preserved, accompanied by tumor mass reduction compared to control mice. Altogether, this work shows these NCs as a potential drug delivery system able to reach the tumor microenvironment, reducing the undesired systemic toxic effects. Moreover, these nanosystems are prepared under scalable methodologies and straightforward process, and provide tumor selectivity through a smart mechanism independent of targeting ligands.

18.
Front Neurosci ; 15: 618098, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34121983

RESUMO

KIF1A is a microtubule-dependent motor protein responsible for fast anterograde transport of synaptic vesicle precursors in neurons. Pathogenic variants in KIF1A have been associated with a wide spectrum of neurological disorders. Here, we report a patient presenting a severe neurodevelopmental disorder carrying a novel de novo missense variant p.Arg169Thr (R169T) in the KIF1A motor domain. The clinical features present in our patient match with those reported for NESCAV syndrome including severe developmental delay, spastic paraparesis, motor sensory neuropathy, bilateral optic nerve atrophy, progressive cerebellar atrophy, epilepsy, ataxia, and hypotonia. Here, we demonstrate that the microtubule-stimulated ATPase activity of the KIF1A is strongly reduced in the motor domain of the R169T variant. Supporting this, in silico structural modeling suggests that this variant impairs the interaction of the KIF1A motor domain with microtubules. The characterization of the molecular effect of the R169T variant on the KIF1A protein together with the presence of the typical clinical features indicates its causal pathogenic effect.

19.
Autophagy ; 17(6): 1349-1366, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-32397857

RESUMO

ABTL0812 is a first-in-class small molecule with anti-cancer activity, which is currently in clinical evaluation in a phase 2 trial in patients with advanced endometrial and squamous non-small cell lung carcinoma (NCT03366480). Previously, we showed that ABTL0812 induces TRIB3 pseudokinase expression, resulting in the inhibition of the AKT-MTORC1 axis and macroautophagy/autophagy-mediated cancer cell death. However, the precise molecular determinants involved in the cytotoxic autophagy caused by ABTL0812 remained unclear. Using a wide range of biochemical and lipidomic analyses, we demonstrated that ABTL0812 increases cellular long-chain dihydroceramides by impairing DEGS1 (delta 4-desaturase, sphingolipid 1) activity, which resulted in sustained ER stress and activated unfolded protein response (UPR) via ATF4-DDIT3-TRIB3 that ultimately promotes cytotoxic autophagy in cancer cells. Accordingly, pharmacological manipulation to increase cellular dihydroceramides or incubation with exogenous dihydroceramides resulted in ER stress, UPR and autophagy-mediated cancer cell death. Importantly, we have optimized a method to quantify mRNAs in blood samples from patients enrolled in the ongoing clinical trial, who showed significant increased DDIT3 and TRIB3 mRNAs. This is the first time that UPR markers are reported to change in human blood in response to any drug treatment, supporting their use as pharmacodynamic biomarkers for compounds that activate ER stress in humans. Finally, we found that MTORC1 inhibition and dihydroceramide accumulation synergized to induce autophagy and cytotoxicity, phenocopying the effect of ABTL0812. Given the fact that ABTL0812 is under clinical development, our findings support the hypothesis that manipulation of dihydroceramide levels might represents a new therapeutic strategy to target cancer.Abbreviations: 4-PBA: 4-phenylbutyrate; AKT: AKT serine/threonine kinase; ATG: autophagy related; ATF4: activating transcription factor 4; Cer: ceramide; DDIT3: DNA damage inducible transcript 3; DEGS1: delta 4-desaturase, sphingolipid 1; dhCer: dihydroceramide; EIF2A: eukaryotic translation initiation factor 2 alpha; EIF2AK3: eukaryotic translation initiation factor 2 alpha kinase 3; ER: endoplasmic reticulum; HSPA5: heat shock protein family A (Hsp70) member 5; MAP1LC3B: microtubule associated protein 1 light chain 3 beta; MEF: mouse embryonic fibroblast; MTORC1: mechanistic target of rapamycin kinase complex 1; NSCLC: non-small cell lung cancer; THC: Δ9-tetrahydrocannabinol; TRIB3: tribbles pseudokinase 3; XBP1: X-box binding protein 1; UPR: unfolded protein response.


Assuntos
Autofagia/efeitos dos fármacos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Fibroblastos/efeitos dos fármacos , Ácidos Linoleicos/farmacologia , Antineoplásicos/farmacologia , Proteínas de Ciclo Celular/metabolismo , Ceramidas/farmacologia , Fibroblastos/metabolismo , Humanos , Neoplasias Pulmonares/tratamento farmacológico
20.
Front Cell Dev Biol ; 8: 559553, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33330445

RESUMO

Neuroblastoma (NB) is a neural crest-derived tumor, which develops before birth or in early childhood, with metastatic dissemination typically preceding diagnosis. Tumors are characterized by a highly heterogeneous combination of cellular phenotypes demonstrating varying degrees of differentiation along different lineage pathways, and possessing distinct super-enhancers and core regulatory circuits, thereby leading to highly varied malignant potential and divergent clinical outcomes. Cytoskeletal reorganization is fundamental to cellular transformations, including the processes of cellular differentiation and epithelial to mesenchymal transition (EMT), previously reported by our lab and others to coincide with chemotherapy resistance and enhanced metastatic ability of tumor cells. This study set out to investigate the ability of the neuronal miR-124-3p to reverse the cellular transformation associated with drug resistance development and assess the anti-oncogenic role of this miRNA in in vitro models of drug-resistant adrenergic (ADRN) and mesenchymal (MES) neuroblastoma cell lines. Low expression of miR-124-3p in a cohort of neuroblastomas was significantly associated with poor overall and progression-free patient survival. Over-expression of miR-124-3p in vitro inhibited cell viability through the promotion of cell cycle arrest and induction of apoptosis in addition to sensitizing drug-resistant cells to chemotherapeutics in a panel of morphologically distinct neuroblastoma cell lines. Finally, we describe miR-124-3p direct targeting and repression of key up-regulated cytoskeletal genes including MYH9, ACTN4 and PLEC and the reversal of the resistance-associated EMT and enhanced invasive capacity previously reported in our in vitro model (SK-N-ASCis24).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...