Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sleep ; 46(6)2023 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-37039660

RESUMO

Closed-loop acoustic stimulation (CLAS) during sleep has shown to boost slow wave (SW) amplitude and spindle power. Moreover, sleep SW have been classified based on different processes of neuronal synchronization. Thus, different types of SW events may have distinct functional roles and be differentially affected by external stimuli. However, the SW synchronization processes affected by CLAS are not well understood. Here, we studied the effect of CLAS on the dissociation of SW events based on two features of neuronal synchronization in the electroencephalogram (topological spread and wave slope). We evaluated and classified individual SW events of 14 healthy subjects during a CLAS stimulated (STM) and a control night (CNT). Three main categories of SW events were found denoting (C1) steep slope SW with global spread, (C2) flat-slope waves with localized spread and homeostatic decline, and (C3) multipeaked flat-slope events with global spread. Comparing between conditions, we found a consistent increase of event proportion and trough amplitudes for C1 events during the time of stimulation. Furthermore, we found similar increases in post-stimulus spectral power in θ, ß, and σ frequencies for CNT vs STIM condition independently of sleep stage or SW categories. However, topological analysis showed differentiated spatial dynamics in N2 and N3 for SW categories and the co-occurrence with spindle events. Our findings support the existence of multiple types of SW with differential response to external stimuli and possible distinct neuronal mechanisms.


Assuntos
Fases do Sono , Sono , Humanos , Estimulação Acústica , Sono/fisiologia , Fases do Sono/fisiologia , Eletroencefalografia , Voluntários Saudáveis
2.
PLoS One ; 17(6): e0270202, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35731741

RESUMO

In this paper we present the design of an open-source and low-cost buoy prototype for remote monitoring of water quality variables in fish farming. The designed battery-powered system periodically measures temperature, pH and dissolved oxygen, transmitting the information locally through a low-power wide-area network protocol to a gateway connected to a cloud service for data storage and visualization. We provide a novel buoy design that can be easily constructed with off-the-shelf materials, delivering a stable anchored float for the IoT device and the probes immersed in the water pond. The prototype was tested at an operating fish farm, showing promising results for a low-cost remote monitoring tool that enables automatic data acquisition and storage in fish farming scenarios. All the elements of this design, including hardware and software designs, are freely available under permissive licenses as an open-source project.


Assuntos
Pesqueiros , Qualidade da Água , Computação em Nuvem
3.
Sensors (Basel) ; 10(4): 4071-82, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-22319342

RESUMO

We report on the design and characterization of the building blocks of a single-chip wireless chemical sensor fabricated with a commercial complementary metal-oxide-silicon (CMOS) technology, which includes two types of transducers for impedimetric measurements (4-electrode array and two interdigitated electrodes), instrumentation circuits, and a metal coil and circuits for inductive power and data transfer. The electrodes have been formed with a polycrystalline silicon layer of the technology by a simple post-process that does not require additional deposition or lithography steps, but just etching steps. A linear response to both conductivity and permittivity of solutions has been obtained. Wireless communication of the sensor chip with a readout unit has been demonstrated. The design of the chip was prepared for individual block characterization and not for full system characterization. The integration of chemical transducers within monolithic wireless platforms will lead to smaller, cheaper, and more reliable chemical microsensors, and will open up the door to numerous new applications where liquid mediums that are enclosed in sealed receptacles have to be measured.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...