Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Food Sci Nutr ; 12(2): 707-721, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38370091

RESUMO

Cereal grains are a good source of macronutrients and micronutrients that are required for metabolic activity in the human body. Sprouts have been studied to enhance the nutrient profile. Moreover, secondary metabolites are examined as green food engineering technology that is used in the pharmaceutical, functional ingredients, nutraceutical, and cosmetic industries. The sprout-based food is commonly used to enhance the quality of products by softening the structure of the whole grain and increasing the phytochemicals (nutritional value and bioactive compounds). These sprouting grains can be added to a variety of products including snacks, bakery, beverage, and meat. Consuming whole grains has been shown to reduce the incidence and mortality of a variety of chronic and noncommunicable diseases. Sprouting grains have a diversity of biological functions, including antidiabetic, antioxidant, and anticancer properties. Cereal sprout-based products are more beneficial in reducing the risk of cardiovascular diseases and gastrointestinal tract diseases. The novel extraction techniques (microwave-existed extraction, pulse electric field, and enzyme-associated) are applied to maintain and ensure the efficiency, safety, and nutritional profile of sprout. Nutrient-dense sprouts have a low environmental impact and are widely accepted by consumers. This review explores for the first time and sheds light on the antioxidant potential, sensory evaluation, industrial applications, and health perspective of cereal sprout-based food products.

2.
Molecules ; 28(19)2023 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-37836725

RESUMO

Oils derived from plant sources, mainly fixed oils from seeds and essential oil from other parts of the plant, are gaining interest as they are the rich source of beneficial compounds that possess potential applications in different industries due to their preventive and therapeutic actions. The essential oils are used in food, medicine, cosmetics, and agriculture industries as they possess antimicrobial, anticarcinogenic, anti-inflammatory and immunomodulatory properties. Plant based oils contain polyphenols, phytochemicals, and bioactive compounds which show high antioxidant activity. The extractions of these oils are a crucial step in terms of the yield and quality attributes of plant oils. This review paper outlines the different modern extraction techniques used for the extraction of different seed oils, including microwave-assisted extraction (MAE), pressurized liquid extraction (PLE), cold-pressed extraction (CPE), ultrasound-assisted extraction (UAE), supercritical-fluid extraction (SFE), enzyme-assisted extraction (EAE), and pulsed electric field-assisted extraction (PEF). For the identification and quantification of essential and bioactive compounds present in seed oils, different modern techniques-such as high-performance liquid chromatography (HPLC), gas chromatography-mass spectrometry (GC-MS), Fourier transform infrared spectroscopy (FTIR), gas chromatography-infrared spectroscopy (GC-IR), atomic fluorescence spectroscopy (AFS), and electron microscopy (EM)-are highlighted in this review along with the beneficial effects of these essential components in different in vivo and in vitro studies and in different applications. The primary goal of this research article is to pique the attention of researchers towards the different sources, potential uses and applications of oils in different industries.


Assuntos
Óleos Voláteis , Óleos de Plantas , Óleos de Plantas/química , Cromatografia Gasosa-Espectrometria de Massas , Óleos Voláteis/química , Sementes/química , Antioxidantes/química
3.
Food Anal Methods ; : 1-13, 2023 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-37359894

RESUMO

The subject of this study is to determine the best solvent and optimum extraction conditions for the extraction of maximum antioxidant phenolic compounds and antioxidant activity from strawberry fruits (Fragaria x ananassa Duch.). Extractions were carried out using solvents with different polarities (water, methanol, ethanol, acetonitrile, and acetone). Box-Behnken Design was used to optimize extraction conditions, including extraction time (t), temperature (°C), and liquid/solid (L/S) ratio. In the study, extracts obtained with acetone indicated the highest total phenolic content (TPC), total flavonoid content (TFC), and antioxidant activity. The optimal extraction conditions for both responses were determined to be time of 17.5 min, temperature 52.5 °C, and liquid/solid ratio of 30:1. The maximum TPC and TFC values were found as 18.78 ± 0.22 mg of gallic acid equivalent (GAE/g) and 10.52 ± 0.35 mg of catechin equivalents (CE/g) under optimum extraction conditions. The results indicated that optimizing extraction conditions is critical for quantifying antioxidant phenolic compounds. The present model can contribute to finding a cheap way of delivering natural antioxidants in the food, cosmeceutical, and pharmaceutical industries. Furthermore, these results indicate that strawberry fruits (Fragaria x ananassa Duch.) can be a natural food colorant in dietary applications with potential health benefits.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...