Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Rapid Commun Mass Spectrom ; 36(8): e9260, 2022 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-35040222

RESUMO

RATIONALE: Building on our report that collision-induced dissociation (CID) can be used to create the highly reactive U-alkylidyne species [O=U≡CH]+ , our goal was to determine whether the species could be as an intermediate for synthesis of [OUS]+ by reaction with carbon disulfide (CS2 ). METHODS: Cationic uranyl-propiolate precursor ions were generated by electrospray ionization, and multiple-stage CID in a linear trap instrument was used to prepare [O=U≡CH]+ . Neutral CS2 was admitted into the trap through a modified He inlet and precision leak valves. RESULTS: The [O=U≡CH]+ ion reacts with CS2 to generate [OUS]+ . CID of [OUS]+ causes elimination of the axial sulfide ligand to generate [OU]+ . Using isotopically labeled reagent, we found that [OUS]+ reacts with O2 to create [UO2 ]+ . CONCLUSIONS: [O=U≡CH]+ proves to be a useful reagent ion for synthesis of [OUS]+ , a species that to date has only been created by gas-phase reactions of U+ and U2+ . Dissociation of [OUS]+ to create [OU]+ , but not [US]+ , and the efficient conversion of the species into [UO2 ]+ , is consistent with the relative differences in U-O and U-S bond energies.


Assuntos
Íons
2.
Nature ; 587(7834): 387-391, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33208957

RESUMO

Stellar mergers are a brief but common phase in the evolution of binary star systems1,2. These events have many astrophysical implications; for example, they may lead to the creation of atypical stars (such as magnetic stars3, blue stragglers4 and rapid rotators5), they play an important part in our interpretation of stellar populations6 and they represent formation channels of compact-object mergers7. Although a handful of stellar mergers have been observed directly8,9, the central remnants of these events were shrouded by an opaque shell of dust and molecules10, making it impossible to observe their final state (for example, as a single merged star or a tighter, surviving binary11). Here we report observations of an unusual, ring-shaped ultraviolet ('blue') nebula and the star at its centre, TYC 2597-735-1. The nebula has two opposing fronts, suggesting a bipolar outflow of material from TYC 2597-735-1. The spectrum of TYC 2597-735-1 and its proximity to the Galactic plane suggest that it is an old star, yet it has abnormally low surface gravity and a detectable long-term luminosity decay, which is uncharacteristic for its evolutionary stage. TYC 2597-735-1 also exhibits Hα emission, radial-velocity variations, enhanced ultraviolet radiation and excess infrared emission-signatures of dusty circumstellar disks12, stellar activity13 and accretion14. Combined with stellar evolution models, the observations suggest that TYC 2597-735-1 merged with a lower-mass companion several thousand years ago. TYC 2597-735-1 provides a look at an unobstructed stellar merger at an evolutionary stage between its dynamic onset and the theorized final equilibrium state, enabling the direct study of the merging process.

3.
Nature ; 457(7232): 990-3, 2009 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-19225520

RESUMO

Few intergalactic, plausibly primordial clouds of neutral atomic hydrogen (H(i)) have been found in the local Universe, suggesting that such structures have either dispersed, become ionized or produced a stellar population on gigayear timescales. The Leo ring, a massive (M(H(i)) approximately 1.8 x 10(9)M[symbol: see text], M[symbol: see text] denoting the solar mass), 200-kpc-wide structure orbiting the galaxies M105 and NGC 3384 with a 4-Gyr period, is a candidate primordial cloud. Despite repeated atttempts, it has previously been seen only from H i emission, suggesting the absence of a stellar population. Here we report the detection of ultraviolet light from gaseous substructures of the Leo ring, which we attribute to recent massive star formation. The ultraviolet colour of the detected complexes is blue, implying the onset of a burst of star formation or continuous star formation of moderate (approximately 10(8)-yr) duration. Measured ultraviolet-visible photometry favours models with low metallicity (Z approximately Z[symbol: see text]/50-Z[symbol: see text]/5, Z[symbol: see text] denoting the solar metallicity), that is, a low proportion of elements heavier than helium, although spectroscopic confirmation is needed. We speculate that the complexes are dwarf galaxies observed during their formation, but distinguished by their lack of a dark matter component. In this regard, they resemble tidal dwarf galaxies, although without the enrichment preceding tidal stripping. If structures like the Leo ring were common in the early Universe, they may have produced a large, yet undetected, population of faint, metal-poor, halo-lacking dwarf galaxies.

4.
Nature ; 448(7155): 780-3, 2007 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-17700694

RESUMO

Mira is one of the first variable stars ever discovered and it is the prototype (and also the nearest example) of a class of low-to-intermediate-mass stars in the late stages of stellar evolution. These stars are relatively common and they return a large fraction of their original mass to the interstellar medium (ISM) (ref. 2) through a processed, dusty, molecular wind. Thus stars in Mira's stage of evolution have a direct impact on subsequent star and planet formation in their host galaxy. Previously, the only direct observation of the interaction between Mira-type stellar winds and the ISM was in the infrared. Here we report the discovery of an ultraviolet-emitting bow shock and turbulent wake extending over 2 degrees on the sky, arising from Mira's large space velocity and the interaction between its wind and the ISM. The wake is visible only in the far ultraviolet and is consistent with an unusual emission mechanism whereby molecular hydrogen is excited by turbulent mixing of cool molecular gas and shock-heated gas. This wind wake is a tracer of the past 30,000 years of Mira's mass-loss history and provides an excellent laboratory for studying turbulent stellar wind-ISM interactions.

5.
Nature ; 446(7132): 159-62, 2007 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-17344847

RESUMO

Cataclysmic variables (classical novae and dwarf novae) are binary star systems in which a red dwarf transfers hydrogen-rich matter, by way of an accretion disk, to its white dwarf companion. In dwarf novae, an instability is believed to episodically dump much of the accretion disk onto the white dwarf. The liberation of gravitational potential energy then brightens these systems by up to 100-fold every few weeks or months. Thermonuclear-powered eruptions thousands of times more luminous occur in classical novae, accompanied by significant mass ejection and formation of clearly visible shells from the ejected material. Theory predicts that the white dwarfs in all dwarf novae must eventually accrete enough mass to undergo classical nova eruptions. Here we report a shell, an order of magnitude more extended than those detected around many classical novae, surrounding the prototypical dwarf nova Z Camelopardalis. The derived shell mass matches that of classical novae, and is inconsistent with the mass expected from a dwarf nova wind or a planetary nebula. The shell observationally links the prototypical dwarf nova Z Camelopardalis with an ancient nova eruption and the classical nova process.

6.
Nature ; 442(7105): 888-91, 2006 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-16929291

RESUMO

Detailed high-resolution observations of the innermost regions of nearby galaxies have revealed the presence of supermassive black holes. These black holes may interact with their host galaxies by means of 'feedback' in the form of energy and material jets; this feedback affects the evolution of the host and gives rise to observed relations between the black hole and the host. Here we report observations of the ultraviolet emissions of massive early-type galaxies. We derive an empirical relation for a critical black-hole mass (as a function of velocity dispersion) above which the outflows from these black holes suppress star formation in their hosts by heating and expelling all available cold gas. Supermassive black holes are negligible in mass compared to their hosts but nevertheless seem to play a critical role in the star formation history of galaxies.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...