Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 17(12): e0278766, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36476845

RESUMO

BACKGROUND: Patients suffering from severe trauma experience substantial immunological stress. Lung injury is a known risk factor for the development of posttraumatic complications, but information on the long-term course of the pulmonary inflammatory response and treatment with mild hypothermia are scarce. AIM: To investigate the pulmonary inflammatory response to multiple trauma and hemorrhagic shock in a porcine model of combined trauma and to assess the immunomodulatory properties of mild hypothermia. METHODS: Following induction of trauma (blunt chest trauma, liver laceration, tibia fracture), two degrees of hemorrhagic shock (45 and 50%) over 90 (n = 30) and 120 min. (n = 20) were induced. Animals were randomized to hypothermia (33°C) or normothermia (38°C). We evaluated bronchoalveolar lavage (BAL) fluid and tissue levels of cytokines and investigated changes in microRNA- and gene-expression as well as tissue apoptosis. RESULTS: We observed a significant induction of Interleukin (IL) 1ß, IL-6, IL-8, and Cyclooxygenase-2 mRNA in lung tissue. Likewise, an increased IL-6 protein concentration could be detected in BAL-fluid, with a slight decrease of IL-6 protein in animals treated with hypothermia. Lower IL-10 protein levels in normothermia and higher IL-10 protein concentrations in hypothermia accompanied this trend. Tissue apoptosis increased after trauma. However, intervention with hypothermia did not result in a meaningful reduction of pro-inflammatory biomarkers or tissue apoptosis. CONCLUSION: We observed signs of a time-dependent pulmonary inflammation and apoptosis at the site of severe trauma, and to a lower extent in the trauma-distant lung. Intervention with mild hypothermia had no considerable effect during 48 hours following trauma.


Assuntos
Traumatismo Múltiplo , Choque Hemorrágico , Traumatismos Torácicos , Ferimentos não Penetrantes , Animais , Interleucina-10 , Interleucina-6 , Pulmão , Traumatismo Múltiplo/complicações , Traumatismo Múltiplo/terapia , Choque Hemorrágico/terapia , Suínos , Traumatismos Torácicos/complicações , Traumatismos Torácicos/terapia
2.
Int J Mol Sci ; 23(11)2022 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-35682679

RESUMO

Pulmonary infections caused by the group of nontuberculosis mycobacteria (NTM), Mycobacterium avium complex (MAC), are a growing public health concern with incidence and mortality steadily increasing globally. Granulomatous inflammation is the hallmark of MAC lung infection, yet reliable correlates of disease progression, susceptibility, and resolution are poorly defined. Unlike widely used inbred mouse strains, mice that carry the mutant allele at the genetic locus sst1 develop human-like pulmonary tuberculosis featuring well-organized caseating granulomas. We characterized pulmonary temporospatial outcomes of intranasal and left intrabronchial M. avium spp. hominissuis (M.av) induced pneumonia in B6.Sst1S mice, which carries the sst1 mutant allele. We utilized traditional semi-quantitative histomorphological evaluation, in combination with fluorescent multiplex immunohistochemistry (fmIHC), whole slide imaging, and quantitative digital image analysis. Followingintrabronchiolar infection with the laboratory M.av strain 101, the B6.Sst1S pulmonary lesions progressed 12-16 weeks post infection (wpi), with plateauing and/or resolving disease by 21 wpi. Caseating granulomas were not observed during the study. Disease progression from 12-16 wpi was associated with increased acid-fast bacilli, area of secondary granulomatous pneumonia lesions, and Arg1+ and double positive iNOS+/Arg1+ macrophages. Compared to B6 WT, at 16 wpi, B6.Sst1S lungs exhibited an increased area of acid-fast bacilli, larger secondary lesions with greater Arg1+ and double positive iNOS+/Arg1+ macrophages, and reduced T cell density. This morphomolecular analysis of histologic correlates of disease progression in B6.Sst1S could serve as a platform for assessment of medical countermeasures against NTM infection.


Assuntos
Infecção por Mycobacterium avium-intracellulare , Pneumonia , Animais , Modelos Animais de Doenças , Progressão da Doença , Suscetibilidade a Doenças , Granuloma , Camundongos , Camundongos Endogâmicos , Mycobacterium avium , Complexo Mycobacterium avium , Infecção por Mycobacterium avium-intracellulare/epidemiologia
3.
Brain Sci ; 12(5)2022 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-35625063

RESUMO

BACKGROUND: Inflammation, particularly cytokine release, contributes to epileptogenesis by influencing the cerebral tissue remodeling and neuronal excitability that occurs after a precipitating epileptogenic insult. While several cytokines have been explored in this process, release kinetics are less well investigated. Determining the time course of cytokine release in the epileptogenic zone is necessary for precisely timed preventive or therapeutic anti-inflammatory interventions. METHODS: Hippocampal extracellular levels of six cytokines and chemokines (IL-1ß, IL-6, IL-10, CCL2, CCL3, and CCL5) were quantified at various time points during epileptogenesis in a rat model of mesial temporal lobe epilepsy with hippocampal sclerosis (mTLE-HS) using microdialysis (MD). RESULTS: The analysis of microdialysates demonstrated consistent elevation at all time points during epileptogenesis for IL-1ß and IL-10. IL-10 release was maximal on day 1, IL-1ß release peaked at day 8. No correlation between local hippocampal IL-1ß concentrations and IL-1ß blood levels was found. CONCLUSION: The release kinetics of IL-1ß are consistent with its established pro-epileptogenic properties, while the kinetics of IL-10 suggest a counter-regulatory effect. This proof-of-concept study demonstrates the feasibility of intraindividual longitudinal monitoring of hippocampal molecular inflammatory processes via repetitive MD over several weeks and sheds light on the kinetics of hippocampal cytokine release during epileptogenesis.

4.
J Am Heart Assoc ; 10(18): e020441, 2021 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-34533042

RESUMO

Background Persistent activation of endoplasmic reticulum stress and the unfolded protein response (UPR) induces vascular cell apoptosis, contributing to atherogenesis. Aging and hypercholesterolemia are 2 independent proatherogenic factors. How they affect vascular UPR signaling remains unclear. Methods and Results Transcriptome analysis of aortic tissues from high fat diet-fed and aged ApoE-/- mice revealed 50 overlapping genes enriched for endoplasmic reticulum stress- and UPR-related pathways. Aortae from control, Western diet (WD)-fed, and aged ApoE-/- mice were assayed for (1) 3 branches of UPR signaling (pancreatic ER eIF2-alpha kinase /alpha subunit of the eukaryotic translation initiation factor 1/activating transcription factor 4, inositol-requiring enzyme 1 alpha/XBP1s, activating transcription factor 6); (2) UPR-mediated protective adaptation (upregulation of immunoglobulin heavy chain-binding protein and protein disulfide isomerase); and (3) UPR-mediated apoptosis (induction of C/EBP homologous transcription factor, p-JNK, and cleaved caspase-3). Aortic UPR signaling was differentially regulated in the aged and WD-fed groups. Consumption of WD activated all 3 UPR branches; in the aged aorta, only the ATF6α arm was activated, but it was 10 times higher than that in the WD group. BiP and protein disulfide isomerase protein levels were significantly decreased only in the aged aorta despite a 5-fold increase in their mRNA levels. Importantly, the aortae of aged mice exhibited a substantially enhanced proapoptotic UPR compared with that of WD-fed mice. In lung tissues, UPR activation and the resultant adaptive/apoptotic responses were not significantly different between the 2 groups. Conclusions Using a mouse model of atherosclerosis, this study provides the first in vivo evidence that aging and an atherogenic diet activate differential aortic UPR pathways, leading to distinct vascular responses. Compared with dietary intervention, aging is associated with impaired endoplasmic reticulum protein folding and increased aortic apoptosis.


Assuntos
Hipercolesterolemia , Apolipoproteínas E/genética , Apoptose , Estresse do Retículo Endoplasmático , Hipercolesterolemia/genética , Isomerases de Dissulfetos de Proteínas/genética , Resposta a Proteínas não Dobradas , Animais , Camundongos , Camundongos Knockout para ApoE
5.
Front Cardiovasc Med ; 8: 649813, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33796575

RESUMO

Background: Binge drinking has become the most common and deadly pattern of excessive alcohol use in the United States, especially among younger adults. It is closely related to the increased risk of cardiovascular disease. Oxidative stress as a result of ethanol metabolism is the primary pathogenic factor for alcohol-induced end organ injury, but the role of protein S-glutathionylation-a reversible oxidative modification of protein cysteine thiol groups that mediates cellular actions by oxidants-in binge drinking-associated cardiovascular disease has not been explored. The present study defines the effect of alcohol binge drinking on the formation of protein S-glutathionylation in a mouse model of atherosclerosis. Methods and Results: To mimic the weekend binge drinking pattern in humans, ApoE deficient (ApoE -/-) mice on the Lieber-DeCarli liquid diet received ethanol or isocaloric maltose (as a control) gavages (5 g/kg/day, 2 consecutive days/week) for 6 weeks. The primary alcohol-targeted organs (liver, brain), and cardiovascular system (heart, aorta, lung) of these two groups of the mice were determined by measuring the protein S-glutathionylation levels and its regulatory enzymes including [Glutaredoxin1(Grx1), glutathione reductase (GR), glutathione-S-transferase Pi (GST-π)], as well as by assessing aortic endothelial function and liver lipid levels. Our results showed that binge drinking selectively stimulated protein S-glutathionylation in aorta, liver, and brain, which coincided with altered glutathionylation regulatory enzyme expression that is downregulated Grx1 and upregulated GST-π in aorta, massive upregulation of GST-π in liver, and no changes in Grx1 and GST-π in brain. Functionally, binge drinking induced aortic endothelial cell function, as reflected by increased aortic permeability and reduced flow-mediated vasodilation. Conclusions: This study is the first to provide in vivo evidence for differential effects of binge drinking on formation of protein S-glutathionylation and its enzymatic regulation system in major alcohol-target organs and cardiovascular system. The selective induction of protein S-glutathionylation in aorta and liver is associated with aortic endothelial dysfunction and fatty liver, which may be a potential redox mechanism for the increased risk of vascular disease in human binge-drinkers.

6.
Virulence ; 12(1): 1003-1010, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-33843461

RESUMO

Moraxella catarrhalis is a bacterial pathogen that causes respiratory tract infections in humans. The increasing prevalence of antibiotic-resistant M. catarrhalis strains has created a demand for alternative treatment options. We therefore tested 23 insect antimicrobial peptides (AMPs) for their activity against M. catarrhalis in a human in vitro infection model with primary macrophages, and against commensal bacteria. Effects on bacterial growth were determined by colony counting and growth curve analysis. The inflammatory macrophage response was characterized by qPCR and multiplex ELISA. Eleven of the AMPs were active against M. catarrhalis. Defensin 1 from the red flour beetle Tribolium castaneum significantly inhibited bacterial growth and reduced the number of colony forming units. This AMP also showed antibacterial activity in the in vitro infection model, reducing cytokine expression and release by macrophages. Defensin 1 had no effect on the commensal bacteria Escherichia coli and Enterococcus faecalis. However, sarcotoxin 1 C from the green bottle fly Lucilia sericata was active against M. catarrhalis and E. coli, but not against E. faecalis. The ability of T. castaneum defensin 1 to inhibit M. catarrhalis but not selected commensal bacteria, and the absence of cytotoxic or inflammatory effects against human blood-derived macrophages, suggests this AMP may be suitable for development as a new therapeutic lead against antibiotic-resistant M. catarrhalis.


Assuntos
Peptídeos Antimicrobianos , Defensinas , Moraxella , Tribolium , Animais , Humanos , Antibacterianos/farmacologia , Peptídeos Antimicrobianos/toxicidade , Defensinas/toxicidade , Escherichia coli , Moraxella/fisiologia , Moraxella catarrhalis
7.
Life Sci ; 270: 119158, 2021 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-33545200

RESUMO

AIMS: Malaria is a serious health threat in tropical countries. The causative parasite of Malaria tropica, the severe form, is the protozoan Plasmodium falciparum. In humans, it infects red blood cells, compromising blood flow and tissue perfusion. This study aims to identify potential biomarkers and RNA networks in leukocyte transcriptomes from patients suffering from Malaria tropica. MATERIALS AND METHODS: We identified differentially regulated mRNAs and microRNAs in peripheral blood leukocytes of healthy donors and Malaria patients. Genes whose expression changes were not attributable to changes in leukocyte composition were used for bioinformatics analysis and network construction. Using a previously published cohort of community-acquired pneumonia (CAP) patients, we established discriminating transcriptomic features versus Malaria. We aimed to establish differences between the patient groups by principal component (PCA) and receiving operator characteristic (ROC) analyses and in silico cell type deconvolution. KEY FINDINGS: We found 870 genes that were significantly differentially expressed between healthy donors and Malaria patients. E2F1, BIRC5 and CCNB1 were identified to be primarily responsible for PCA separation of these two groups. We searched for biological function and found that cell cycle processes were strongly activated. By in silico cell type deconvolution, we attribute this to an expansion of γδ T cells. Additional discrimination between CAP and Malaria yielded 445 differentially expressed genes, among which immune proteasome transcripts PSMB8, PSMB9 and PSMB10 were significantly induced in Malaria. SIGNIFICANCE: We identified transcripts from patient leukocytes that differentiate between healthy, Malaria and CAP, and indicate a biological context with potential pathophysiological relevance.


Assuntos
Malária/genética , Adulto , Biomarcadores/sangue , Biologia Computacional , Feminino , Expressão Gênica/genética , Perfilação da Expressão Gênica/métodos , Humanos , Malária/parasitologia , Masculino , MicroRNAs/sangue , MicroRNAs/genética , Pessoa de Meia-Idade , Plasmodium falciparum/genética , Plasmodium falciparum/patogenicidade , RNA Mensageiro/sangue , RNA Mensageiro/genética , Transcriptoma/genética
8.
Sci Rep ; 10(1): 241, 2020 01 14.
Artigo em Inglês | MEDLINE | ID: mdl-31937830

RESUMO

Lower respiratory infections, such as community-acquired pneumonia (CAP), and chronic obstructive pulmonary disease (COPD) rank among the most frequent causes of death worldwide. Improved diagnostics and profound pathophysiological insights are urgent clinical needs. In our cohort, we analysed transcriptional networks of peripheral blood mononuclear cells (PBMCs) to identify central regulators and potential biomarkers. We investigated the mRNA- and miRNA-transcriptome of PBMCs of healthy subjects and patients suffering from CAP or AECOPD by microarray and Taqman Low Density Array. Genes that correlated with PBMC composition were eliminated, and remaining differentially expressed genes were grouped into modules. One selected module (120 genes) was particularly suitable to discriminate AECOPD and CAP and most notably contained a subset of five biologically relevant mRNAs that differentiated between CAP and AECOPD with an AUC of 86.1%. Likewise, we identified several microRNAs, e.g. miR-545-3p and miR-519c-3p, which separated AECOPD and CAP. We furthermore retrieved an integrated network of differentially regulated mRNAs and microRNAs and identified HNF4A, MCC and MUC1 as central network regulators or most important discriminatory markers. In summary, transcriptional analysis retrieved potential biomarkers and central molecular features of CAP and AECOPD.


Assuntos
Perfilação da Expressão Gênica , Pneumonia/genética , Doença Pulmonar Obstrutiva Crônica/genética , Transcrição Gênica , Biomarcadores/metabolismo , Infecções Comunitárias Adquiridas/genética , Biologia Computacional , Feminino , Humanos , Masculino , MicroRNAs/genética , Doadores de Tecidos
9.
Virulence ; 10(1): 902-909, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31657264

RESUMO

Streptococcus pneumoniae (S. pneumoniae) is the most common bacterial cause of community-acquired pneumonia. Increasing rates of antibiotic-resistant S. pneumoniae strains impair therapy and necessitate alternative treatment options. In this study, we analysed insect-derived antimicrobial peptides (AMPs) for antibacterial effects on S. pneumoniae in a human in vitro infection model.AMP effects on bacterial growth were examined by colony forming unit (CFU)-assays, and growth curve measurements. Furthermore, cytotoxicity to primary human macrophages was detected by measuring lactate-dehydrogenase release to the supernatant. One AMP (Defensin 1) was tested in a model of primary human monocyte-derived macrophages infected with S. pneumoniae strain D39 and a multi-resistant clinical isolate. Inflammatory reactions were characterised by qPCR and multiplex-ELISA.In total, the antibacterial effects of 23 AMPs were characterized. Only Tribolium castaneum Defensin 1 showed significant antibacterial effects against S. pneumoniae strain D39 and a multi-resistant clinical isolate. During in vitro infection of primary human macrophages with S. pneumoniae D39, Defensin 1 displayed strong antibacterial effects, and consequently reduced bacteria-induced cytokine expression and release.In summary, Tribolium castaneum Defensin 1 showed profound antibacterial effectivity against Streptococcus pneumoniae D39 and a multi-resistant clinical isolate without unwanted cytotoxic or inflammatory side effects on human blood-derived macrophages.


Assuntos
Antibacterianos/farmacologia , Defensinas/farmacologia , Macrófagos/efeitos dos fármacos , Macrófagos/microbiologia , Streptococcus pneumoniae/efeitos dos fármacos , Tribolium/química , Animais , Células Cultivadas , Farmacorresistência Bacteriana Múltipla , Humanos , Macrófagos/imunologia , Testes de Sensibilidade Microbiana , Infecções Pneumocócicas/microbiologia
10.
JBMR Plus ; 3(8): e10205, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31485553

RESUMO

FGF signaling plays a critical role in tooth development, and mutations in modulators of this pathway produce a number of striking phenotypes. However, many aspects of the role of the FGF pathway in regulating the morphological features and the mineral quality of the dentition remain unknown. Here, we used transgenic mice overexpressing the FGF negative feedback regulator Sprouty4 under the epithelial keratin 14 promoter (K14-Spry4) to achieve downregulation of signaling in the epithelium. This led to highly penetrant defects affecting both cusp morphology and the enamel layer. We characterized the phenotype of erupted molars, identified a developmental delay in K14-Spry4 transgenic embryos, and linked this with changes in the tooth developmental sequence. These data further delineate the role of FGF signaling in the development of the dentition and implicate the pathway in the regulation of tooth mineralization. © 2019 The Authors. JBMR Plus is published by Wiley Periodicals, Inc. on behalf of American Society for Bone and Mineral Research.

11.
Development ; 146(18)2019 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-31444215

RESUMO

Developmental defects affecting the heart and aortic arch arteries are a significant phenotype observed in individuals with 22q11 deletion syndrome and are caused by a microdeletion on chromosome 22q11. TBX1, one of the deleted genes, is expressed throughout the pharyngeal arches and is considered a key gene, when mutated, for the arch artery defects. Pax9 is expressed in the pharyngeal endoderm and is downregulated in Tbx1 mutant mice. We show here that Pax9-deficient mice are born with complex cardiovascular malformations that affect the outflow tract and aortic arch arteries with failure of the 3rd and 4th pharyngeal arch arteries to form correctly. Transcriptome analysis indicated that Pax9 and Tbx1 may function together, and mice double heterozygous for Tbx1/Pax9 presented with a significantly increased incidence of interrupted aortic arch when compared with Tbx1 heterozygous mice. Using a novel Pax9Cre allele, we demonstrated that the site of this Tbx1-Pax9 genetic interaction is the pharyngeal endoderm, therefore revealing that a Tbx1-Pax9-controlled signalling mechanism emanating from the pharyngeal endoderm is required for crucial tissue interactions during normal morphogenesis of the pharyngeal arch artery system.


Assuntos
Artérias/embriologia , Região Branquial/irrigação sanguínea , Sistema Cardiovascular/embriologia , Endoderma/embriologia , Morfogênese , Fator de Transcrição PAX9/metabolismo , Faringe/embriologia , Proteínas com Domínio T/metabolismo , Animais , Sistema Cardiovascular/metabolismo , Diferenciação Celular/genética , Embrião de Mamíferos/anormalidades , Deleção de Genes , Redes Reguladoras de Genes , Heterozigoto , Camundongos Endogâmicos C57BL , Modelos Biológicos , Mutação/genética , Crista Neural/patologia , Fator de Transcrição PAX9/deficiência , Ligação Proteica , Transdução de Sinais
12.
Development ; 145(21)2018 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-30305288

RESUMO

The ductal system of the salivary gland has long been postulated to be resistant to radiation-induced damage, a common side effect incurred by head and neck cancer patients receiving radiotherapy. Yet, whether the ducts are capable of regenerating after genotoxic injury, or whether damage to ductal cells induces lineage plasticity, as has been reported in other organ systems, remains unknown. Here, using the murine salivary gland, we show that two ductal progenitor populations, marked exclusively by KRT14 and KIT, maintain non-overlapping ductal compartments after radiation exposure but do so through distinct cellular mechanisms. KRT14+ progenitor cells are fast-cycling cells that proliferate in response to radiation-induced damage in a sustained manner and divide asymmetrically to produce differentiated cells of the larger granulated ducts. Conversely, KIT+ intercalated duct cells are long-lived progenitors for the intercalated ducts that undergo few cell divisions either during homeostasis or after gamma radiation, thus maintaining ductal architecture with slow rates of cell turnover. Together, these data illustrate the regenerative capacity of the salivary ducts and highlight the heterogeneity in the damage responses used by salivary progenitor cells to maintain tissue architecture.


Assuntos
Lesões por Radiação/terapia , Ductos Salivares/patologia , Ductos Salivares/efeitos da radiação , Transplante de Células-Tronco , Células-Tronco/citologia , Células Acinares/metabolismo , Animais , Animais Recém-Nascidos , Divisão Celular Assimétrica , Linhagem da Célula , Proliferação de Células , Células Epiteliais/metabolismo , Feminino , Humanos , Queratina-14/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Modelos Biológicos , Proteínas Proto-Oncogênicas c-kit/metabolismo , Lesões por Radiação/patologia , Ductos Salivares/metabolismo , Glândula Submandibular/metabolismo , Glândula Submandibular/patologia , Glândula Submandibular/efeitos da radiação
14.
Development ; 145(14)2018 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-29945863

RESUMO

Adult tongue epithelium is continuously renewed from epithelial progenitor cells, a process that requires hedgehog (HH) signaling. In mice, pharmacological inhibition of the HH pathway causes taste bud loss within a few weeks. Previously, we demonstrated that sonic hedgehog (SHH) overexpression in lingual progenitors induces ectopic taste buds with locally increased SOX2 expression, suggesting that taste bud differentiation depends on SOX2 downstream of HH. To test this, we inhibited HH signaling in mice and observed a rapid decline in Sox2 and SOX2-GFP expression in taste epithelium. Upon conditional deletion of Sox2, differentiation of both taste and non-taste epithelial cells was blocked, and progenitor cell number increased. In contrast to basally restricted proliferation in controls, dividing cells were overabundant and spread to suprabasal epithelial layers in mutants. SOX2 loss in progenitors also led non-cell-autonomously to taste cell apoptosis, dramatically shortening taste cell lifespans. Finally, in tongues with conditional Sox2 deletion and SHH overexpression, ectopic and endogenous taste buds were not detectable; instead, progenitor hyperproliferation expanded throughout the lingual epithelium. In summary, we show that SOX2 functions downstream of HH signaling to regulate lingual epithelium homeostasis.


Assuntos
Proteínas Hedgehog/metabolismo , Mucosa Bucal/metabolismo , Fatores de Transcrição SOXB1/metabolismo , Papilas Gustativas/metabolismo , Animais , Feminino , Proteínas Hedgehog/genética , Masculino , Camundongos , Camundongos Transgênicos , Mucosa Bucal/citologia , Fatores de Transcrição SOXB1/genética , Papilas Gustativas/citologia
15.
Development ; 145(1)2018 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-29180573

RESUMO

In mice, the incisors grow throughout the animal's life, and this continuous renewal is driven by dental epithelial and mesenchymal stem cells. Sox2 is a principal marker of the epithelial stem cells that reside in the mouse incisor stem cell niche, called the labial cervical loop, but relatively little is known about the role of the Sox2+ stem cell population. In this study, we show that conditional deletion of Sox2 in the embryonic incisor epithelium leads to growth defects and impairment of ameloblast lineage commitment. Deletion of Sox2 specifically in Sox2+ cells during incisor renewal revealed cellular plasticity that leads to the relatively rapid restoration of a Sox2-expressing cell population. Furthermore, we show that Lgr5-expressing cells are a subpopulation of dental Sox2+ cells that also arise from Sox2+ cells during tooth formation. Finally, we show that the embryonic and adult Sox2+ populations are regulated by distinct signalling pathways, which is reflected in their distinct transcriptomic signatures. Together, our findings demonstrate that a Sox2+ stem cell population can be regenerated from Sox2- cells, reinforcing its importance for incisor homeostasis.


Assuntos
Ameloblastos/metabolismo , Antígenos de Diferenciação/biossíntese , Regulação da Expressão Gênica no Desenvolvimento , Incisivo/embriologia , Fatores de Transcrição SOXB1/biossíntese , Células-Tronco/metabolismo , Ameloblastos/citologia , Animais , Antígenos de Diferenciação/genética , Incisivo/citologia , Camundongos , Camundongos Transgênicos , Fatores de Transcrição SOXB1/genética , Células-Tronco/citologia
16.
Sci Rep ; 7(1): 6301, 2017 07 24.
Artigo em Inglês | MEDLINE | ID: mdl-28740179

RESUMO

Extracellular vesicles from eukaryotic cells and outer membrane vesicles (OMVs) released from gram-negative bacteria have been described as mediators of pathogen-host interaction and intercellular communication. Legionella pneumophila (L. pneumophila) is a causative agent of severe pneumonia. The differential effect of bacterial and host cell vesicles in L. pneumophila infection is unknown so far. We infected THP-1-derived or primary human macrophages with L. pneumophila and isolated supernatant vesicles by differential centrifugation. We observed an increase of exosomes in the 100 k pellet by nanoparticle tracking analysis, electron microscopy, and protein markers. This fraction additionally contained Legionella LPS, indicating also the presence of OMVs. In contrast, vesicles in the 16 k pellet, representing microparticles, decreased during infection. The 100 k vesicle fraction activated uninfected primary human alveolar epithelial cells, A549 cells, and THP-1 cells. Epithelial cell activation was reduced by exosome depletion (anti-CD63, or GW4869), or blocking of IL-1ß in the supernatant. In contrast, the response of THP-1 cells to vesicles was reduced by a TLR2-neutralizing antibody, UV-inactivation of bacteria, or - partially - RNase-treatment of vesicles. Taken together, we found that during L. pneumophila infection, neighbouring epithelial cells were predominantly activated by exosomes and cytokines, whereas myeloid cells were activated by bacterial OMVs.


Assuntos
Efeito Espectador , Exossomos/metabolismo , Vesículas Extracelulares/metabolismo , Interações Hospedeiro-Patógeno , Legionella pneumophila/patogenicidade , Doença dos Legionários/metabolismo , Monócitos/metabolismo , Células A549 , Exossomos/microbiologia , Vesículas Extracelulares/microbiologia , Humanos , Doença dos Legionários/microbiologia , Doença dos Legionários/patologia , Monócitos/microbiologia , Células THP-1
17.
Elife ; 62017 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-28475038

RESUMO

Investigations into stem cell-fueled renewal of an organ benefit from an inventory of cell type-specific markers and a deep understanding of the cellular diversity within stem cell niches. Using the adult mouse incisor as a model for a continuously renewing organ, we performed an unbiased analysis of gene co-expression relationships to identify modules of co-expressed genes that represent differentiated cells, transit-amplifying cells, and residents of stem cell niches. Through in vivo lineage tracing, we demonstrated the power of this approach by showing that co-expression module members Lrig1 and Igfbp5 define populations of incisor epithelial and mesenchymal stem cells. We further discovered that two adjacent mesenchymal tissues, the periodontium and dental pulp, are maintained by distinct pools of stem cells. These findings reveal novel mechanisms of incisor renewal and illustrate how gene co-expression analysis of intact biological systems can provide insights into the transcriptional basis of cellular identity.


Assuntos
Perfilação da Expressão Gênica , Incisivo/citologia , Células-Tronco/fisiologia , Animais , Biomarcadores/análise , Proteínas de Transporte/análise , Linhagem da Célula , Glicoproteínas de Membrana/análise , Camundongos , Proteínas do Tecido Nervoso/análise
18.
PLoS One ; 12(4): e0176204, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28445535

RESUMO

BACKGROUND: Legionella pneumophila (L. pneumophila) is a causative agent of severe pneumonia. It is highly adapted to intracellular replication and manipulates host cell functions like vesicle trafficking and mRNA translation to its own advantage. However, it is still unknown to what extent microRNAs (miRNAs) are involved in the Legionella-host cell interaction. METHODS: WT and MyD88-/- murine bone marrow-derived macrophages (BMM) were infected with L. pneumophila, the transcriptome was analyzed by high throughput qPCR array (microRNAs) and conventional qPCR (mRNAs), and mRNA-miRNA interaction was validated by luciferase assays with 3´-UTR mutations and western blot. RESULTS: L. pneumophila infection caused a pro-inflammatory reaction and significant miRNA changes in murine macrophages. In MyD88-/- cells, induction of inflammatory markers, such as Ccxl1/Kc, Il6 and miR-146a-5p was reduced. Induction of miR-125a-3p was completely abrogated in MyD88-/- cells. Target prediction analyses revealed N-terminal asparagine amidase 1 (NTAN1), a factor from the n-end rule pathway, to be a putative target of miR-125a-3p. This interaction could be confirmed by luciferase assay and western blot. CONCLUSION: Taken together, we characterized the miRNA regulation in L. pneumophila infection with regard to MyD88 signaling and identified NTAN1 as a target of miR-125a-3p. This finding unravels a yet unknown feature of Legionella-host cell interaction, potentially relevant for new treatment options.


Assuntos
Amidoidrolases/metabolismo , Legionella pneumophila/fisiologia , MicroRNAs/metabolismo , Fator 88 de Diferenciação Mieloide/genética , Regiões 3' não Traduzidas , Amidoidrolases/antagonistas & inibidores , Amidoidrolases/genética , Animais , Sequência de Bases , Quimiocina CXCL1/análise , Genótipo , Interleucina-6/análise , Interleucina-6/genética , Interleucina-6/metabolismo , Doença dos Legionários/genética , Doença dos Legionários/patologia , Macrófagos/citologia , Macrófagos/metabolismo , Macrófagos/microbiologia , Camundongos , Camundongos Knockout , MicroRNAs/genética , Fator 88 de Diferenciação Mieloide/deficiência , Células RAW 264.7 , Alinhamento de Sequência , Transdução de Sinais , Transcriptoma
19.
Development ; 143(22): 4115-4126, 2016 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-27660324

RESUMO

Sox2 marks dental epithelial stem cells (DESCs) in both mammals and reptiles, and in this article we demonstrate several Sox2 transcriptional mechanisms that regulate dental stem cell fate and incisor growth. Conditional Sox2 deletion in the oral and dental epithelium results in severe craniofacial defects, including impaired dental stem cell proliferation, arrested incisor development and abnormal molar development. The murine incisor develops initially but is absorbed independently of apoptosis owing to a lack of progenitor cell proliferation and differentiation. Tamoxifen-induced inactivation of Sox2 demonstrates the requirement of Sox2 for maintenance of the DESCs in adult mice. Conditional overexpression of Lef-1 in mice increases DESC proliferation and creates a new labial cervical loop stem cell compartment, which produces rapidly growing long tusk-like incisors, and Lef-1 epithelial overexpression partially rescues the tooth arrest in Sox2 conditional knockout mice. Mechanistically, Pitx2 and Sox2 interact physically and regulate Lef-1, Pitx2 and Sox2 expression during development. Thus, we have uncovered a Pitx2-Sox2-Lef-1 transcriptional mechanism that regulates DESC homeostasis and dental development.


Assuntos
Autorrenovação Celular/genética , Proteínas de Homeodomínio , Incisivo/embriologia , Fator 1 de Ligação ao Facilitador Linfoide , Odontogênese/genética , Fatores de Transcrição SOXB1 , Células-Tronco/fisiologia , Fatores de Transcrição , Animais , Células Cultivadas , Embrião de Mamíferos , Epitélio/crescimento & desenvolvimento , Epitélio/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Redes Reguladoras de Genes , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Incisivo/crescimento & desenvolvimento , Incisivo/metabolismo , Fator 1 de Ligação ao Facilitador Linfoide/genética , Fator 1 de Ligação ao Facilitador Linfoide/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Ligação Proteica , Fatores de Transcrição SOXB1/genética , Fatores de Transcrição SOXB1/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Proteína Homeobox PITX2
20.
J Infect Dis ; 214(2): 288-99, 2016 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-26984146

RESUMO

Streptococcus pneumoniae causes high mortality as a major pneumonia-inducing pathogen. In pneumonia, control of innate immunity is necessary to prevent organ damage. We assessed the role of microRNAs (miRNAs) as regulators in pneumococcal infection of human macrophages. Exposure of primary blood-derived human macrophages with pneumococci resulted in transcriptional changes in several gene clusters and a significant deregulation of 10 microRNAs. Computational network analysis retrieved miRNA-146a as one putatively important regulator of pneumococci-induced host cell activation. Its induction depended on bacterial structural integrity and was completely inhibited by blocking Toll-like receptor 2 (TLR-2) or depleting its mediator MyD88. Furthermore, induction of miRNA-146a release did not require the autocrine feedback of interleukin 1ß and tumor necrosis factor α released from infected macrophages, and it repressed the TLR-2 downstream mediators IRAK-1 and TRAF-6, as well as the inflammatory factors cyclooxygenase 2 and interleukin 1ß. In summary, pneumococci recognition induces a negative feedback loop, preventing excessive inflammation via miR-146a and potentially other miRNAs.


Assuntos
Retroalimentação Fisiológica , Ativação de Macrófagos , MicroRNAs/metabolismo , Streptococcus pneumoniae/imunologia , Células Cultivadas , Perfilação da Expressão Gênica , Humanos , MicroRNAs/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...