Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Eur J Neurosci ; 51(7): 1583-1604, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31603587

RESUMO

Voltage-gated Ca2+ channels (VGCCs) are considered to play a key role in auditory perception and information processing within the murine inner ear and brainstem. In the past, Cav 1.3 L-type VGCCs gathered most attention as their ablation causes congenital deafness. However, isolated patch-clamp investigation and localization studies repetitively suggested that Cav 2.3 R-type VGCCs are also expressed in the cochlea and further components of the ascending auditory tract, pointing to a potential functional role of Cav 2.3 in hearing physiology. Thus, we performed auditory profiling of Cav 2.3+/+ controls, heterozygous Cav 2.3+/- mice and Cav 2.3 null mutants (Cav 2.3-/- ) using brainstem-evoked response audiometry. Interestingly, click-evoked auditory brainstem responses (ABRs) revealed increased hearing thresholds in Cav 2.3+/- mice from both genders, whereas no alterations were observed in Cav 2.3-/- mice. Similar observations were made for tone burst-related ABRs in both genders. However, Cav 2.3 ablation seemed to prevent mutant mice from total hearing loss particularly in the higher frequency range (36-42 kHz). Amplitude growth function analysis revealed, i.a., significant reduction in ABR wave WI and WIII amplitude in mutant animals. In addition, alterations in WI -WIV interwave interval were observed in female Cav 2.3+/- mice whereas absolute latencies remained unchanged. In summary, our results demonstrate that Cav 2.3 VGCCs are mandatory for physiological auditory information processing in the ascending auditory tract.


Assuntos
Audiometria de Resposta Evocada , Limiar Auditivo , Canais de Cálcio Tipo N , Potenciais Evocados Auditivos do Tronco Encefálico , Estimulação Acústica , Animais , Tronco Encefálico , Canais de Cálcio , Feminino , Masculino , Camundongos
2.
J R Soc Interface ; 16(157): 20190327, 2019 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-31387485

RESUMO

The fruits of Chinese witch-hazel (Hamamelis mollis, Hamamelidaceae) act as 'drying squeeze catapults', shooting their seeds several metres away. During desiccation, the exocarp shrinks and splits open, and subsequent endocarp deformation is a complex three-dimensional shape change, including formation of dehiscence lines, opening of the apical part and formation of a constriction at the middle part. Owing to the constriction forming, mechanical pressure is increasingly applied on the seed until ejection. We describe a structural latch system consisting of connective cellular structures between endocarp and seed, which break with a distinct cracking sound upon ejection. A maximum seed velocity of 12.3 m s-1, maximum launch acceleration of 19 853 m s-2 (approx. 2000g) and maximum seed rotational velocity of 25 714 min-1 were measured. We argue that miniscule morphological differences between the inner endocarp surface and seed, which features a notable ridge, are responsible for putting spin on the seed. This hypothesis is further corroborated by the observation that there is no preferential seed rotation direction among fruits. Our findings show that H. mollis has evolved similar mechanisms for stabilizing a 'shot out' seed as humans use for stabilizing rifle bullets and are discussed in an ecological (dispersal biology), biomechanical (seed ballistics) and functional-morphological (fine-tuning and morphospace of functional endocarps) contexts, and promising additional aspects for future studies are proposed.


Assuntos
Hamamelis/fisiologia , Dispersão de Sementes/fisiologia , Sementes/fisiologia , Fenômenos Biomecânicos , Frutas/fisiologia , Movimento (Física)
3.
J Biomed Semantics ; 10(1): 9, 2019 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-31146771

RESUMO

BACKGROUND: The vigilant observation of medical devices during post-market surveillance (PMS) for identifying safety-relevant incidents is a non-trivial task. A wide range of sources has to be monitored in order to integrate all accessible data about the safety and performance of a medical device. PMS needs to be supported by an efficient search strategy and the possibility to create complex search queries by domain experts. RESULTS: We use ontologies to support the specification of search queries and the preparation of the document corpus, which contains all relevant documents. In this paper, we present (1) the Search Ontology (SON) v2.0, (2) an Excel template for specifying search queries, and (3) the Search Ontology Generator (SONG), which generates complex queries out of the Excel template. Based on our approach, a service-oriented architecture was designed, which supports and assists domain experts during PMS. Comprehensive testing confirmed the correct execution of all SONG functions. The applicability of our method and of the developed tools was evaluated by domain experts. The test persons concordantly rated our solution after a short period of training as highly user-friendly, intuitive and well applicable for supporting PMS. CONCLUSIONS: The Search Ontology is a promising domain-independent approach to specify complex search queries. Our solution allows advanced searches for relevant documents in different domains using suitable domain ontologies.


Assuntos
Ontologias Biológicas , Mineração de Dados/métodos , Vigilância de Produtos Comercializados , Equipamentos e Provisões/efeitos adversos , Segurança
4.
Neuroscience ; 409: 81-100, 2019 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-31029730

RESUMO

Voltage-gated Ca2+ channels (VGCCs) play key roles in auditory perception and information processing within the inner ear and brainstem. Pharmacological inhibition of low voltage-activated (LVA) T-type Ca2+ channels is related to both age- and noise induced hearing loss in experimental animals and may represent a promising approach to the treatment of auditory impairment of various etiologies. Within the LVA Ca2+ channel subgroup, Cav3.2 is the most prominently expressed T-type channel entity in the cochlea and auditory brainstem. Thus, we performed a complete gender specific click and tone burst based auditory brainstem response (ABR) analysis of Cav3.2+/- and Cav3.2-/- mice, including i.a. temporal progression in hearing loss, amplitude growth function and wave latency analysis as well as a cochlear qPCR based evaluation of other VGCCs transcripts. Our results, based on a self-programmed automated wavelet approach, demonstrate that both heterozygous and Cav3.2 null mutant mice exhibit age-dependent increases in hearing thresholds at 5 months of age. In addition, complex alterations in WI-IV amplitudes and latencies were detected that were not attributable to alterations in the expression of other VGCCs in the auditory tract. Our results clearly demonstrate the important physiological role of Cav3.2 VGCCs in the spatiotemporal organization of auditory processing in young adult mice and suggest potential pharmacological targets for interventions in the future.


Assuntos
Limiar Auditivo/fisiologia , Canais de Cálcio Tipo T/metabolismo , Perda Auditiva/metabolismo , Audição/fisiologia , Animais , Canais de Cálcio Tipo T/genética , Cóclea/metabolismo , Perda Auditiva/genética , Camundongos , Camundongos Knockout
5.
BMC Res Notes ; 12(1): 157, 2019 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-30894204

RESUMO

OBJECTIVES: Voltage-gated Ca2+ channels (VGCCs) are of central relevance in regulating Ca2+ influx into living cells. The low-voltage activated (LVA) Cav3 T-type Ca2+ channels are widely distributed throughout the brain including the peripheral auditory system and ascending auditory tract. Their exact role in auditory information processing is still not fully understood. Within the LVA subgroup, Cav3.2 T-type Ca2+ channels seem to be of special importance as qPCR revealed a steady increase in Cav3.2 transcript levels over age, e.g. in the cochlea and spiral ganglion neurons (SGN). Furthermore, pharmacological studies suggested an association between Cav3.2 expression and both age-related and noise-induced hearing loss. Given the potential functional relevance of Cav3.2 VGGCs in sensorineural hearing loss, we recorded gender specific auditory evoked brainstem responses (ABRs) upon both click and tone burst presentation. Here we present auditory brainstem response (ABR) data from Cav3.2+/+, Cav3.2+/- and Cav3.2-/- mice from both genders which are of value for researchers who want to evaluate how Cav3.2 loss affects basic auditory parameters, e.g. click and tone burst based hearing thresholds, amplitude growth function and peak latencies. DATA DESCRIPTION: Information presented here includes ABR data from age-matched female and male Cav3.2+/+, Cav3.2+/- and Cav3.2-/- mice and technical aspects of the auditory recording protocol. Data were recorded using a commercially available ABR setup from Tucker Davis Technologies Inc. (TDT). Raw data files (arf.-file format) were exported as txt.-files with free access for analysis.


Assuntos
Audiometria de Resposta Evocada/métodos , Canais de Cálcio Tipo T/fisiologia , Potenciais Evocados Auditivos do Tronco Encefálico/fisiologia , Perda Auditiva Neurossensorial/fisiopatologia , Animais , Canais de Cálcio Tipo T/deficiência , Canais de Cálcio Tipo T/genética , Modelos Animais de Doenças , Feminino , Masculino , Camundongos , Camundongos Transgênicos , Fatores Sexuais
6.
Data Brief ; 21: 1263-1266, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30456242

RESUMO

This data article provides raw auditory evoked brainstem responses (ABRs) from controls and Cav2.3 transgenics, i.e. heterozygous Cav2.3+/- and Cav2.3-/- null mutants. Gender specific ABR recordings were performed in age-matched animals under ketamine/xylazine narcosis. Data presented here include ABRs upon both click and tone burst presentation in the increasing SPL mode using a commercially available ABR setup from Tucker Davis Technologies Inc. (TDT, USA). Detailed information is provided for the sound attenuating cubicle, electrical shielding, electrode parameters, stimulus characteristics and architecture, sampling rate, filtering processes and ABR protocol application during the course of data acquisition and recording. The later are important for subsequent analysis of click and tone burst related hearing thresholds, amplitude growth function and peak latencies. Raw data are available at MENDELEY DATA, DIO: 〈DOI:10.17632/g6ygz2spzx.1〉, URL: 〈https://data.mendeley.com/datasets/g6ygz2spzx/1〉).

7.
Biomed Tech (Berl) ; 61(2): 239-48, 2016 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-27028733

RESUMO

Medical devices are manifold and one of the most innovative fields of technology. As technologies advance, former limits cease to exist and complex devices become reality. Medical devices represent a very dynamic field with high economic relevance. The manufacturer of a medical device is obliged to minimize product-related risks as well as to demonstrate compliance with the so-called "essential requirements" regarding safety and performance before placing the device on the market. Any critical incident in relation to the application of a medical device has to be reported to the competent authority for risk assessment, which in Germany is either the Federal Institute for Drugs and Medical Devices (BfArM) or the Paul Ehrlich Institute (PEI) depending on the type of device. In this article, the German regulatory framework for medical devices and the resulting tasks for BfArM are described as well as the topics of its recently installed research and development group on prospective risk identification and application safety for medical devices. Results of failure mode and root cause analyses of incident data are presented as well as further data on cases with the result "root-cause analysis not possible". Finally an outlook is given on future challenges regarding risk assessment for medical devices.


Assuntos
Segurança de Equipamentos/normas , Equipamentos e Provisões/normas , Gestão de Riscos , Alemanha , Órgãos Governamentais/organização & administração , Humanos , Segurança do Paciente/legislação & jurisprudência , Estudos Prospectivos , Medição de Risco
8.
R Soc Open Sci ; 2(6): 140322, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26543566

RESUMO

Pomelos (Citrus maxima) are known for their thick peel which-inter alia-serves as energy dissipator when fruits impact on the ground after being shed. It protects the fruit from splitting open and thus enables the contained seeds to stay germinable and to potentially be dispersed by animal vectors. The main part of the peel consists of a parenchymatous tissue that can be interpreted from a materials point of view as open pored foam whose struts are pressurized and filled with liquid. In order to investigate the influence of the water content on the energy dissipation capacity, drop weight tests were conducted with fresh and with freeze-dried peel samples. Based on the coefficient of restitution it was found that freeze-drying markedly reduces the relative energy dissipation capacity of the peel. Measuring the transmitted force during impact furthermore indicated a transition from a uniform collapse of the foam-like tissue to a progressive collapse due to water extraction. Representing the peel by a Maxwell model illustrates that freeze-drying not only drastically reduces the damping function of the dashpots but also stiffens the springs of the model.

9.
Acta Biomater ; 9(5): 6360-8, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23391991

RESUMO

Plant surfaces covered either with epicuticular wax crystals or cuticular folds have been shown to strongly reduce the ability of insects to attach to them. However, the relative impact of surface structuring vs. surface chemistry on insect attachment remains unclear. To understand the mechanisms reducing adhesion of insects on plant surfaces in more detail, we performed traction experiments (i) on plant surfaces covered with cuticular folds of different dimensions, and on their (ii) untreated and (iii) hydrophobized replicas. As a reference, measurements were performed on replicas of smooth plant surfaces and of glass. Traction forces were measured with a highly sensitive force transducer, using tethered male Colorado potato beetles (Leptinotarsa decemlineata) as a model insect species. Contact angle measurements with water and diiodomethane were also performed to examine the physicochemical properties of the test surfaces. We found that surface structuring has a strong influence on the magnitude of the attachment force. In contrast, under the chosen experimental conditions, surface chemistry had no significant influence. Our results indicate that attachment of the beetles is reduced solely by the dimensions of the folds, with cuticular folds of about 0.5 µm in both height and width being the most effective. Contrary to the attachment of beetles, the wettability of the surfaces was considerably influenced by both surface structuring and chemistry. These results contribute to a better understanding of plant-insect interactions and the function of microstructured surfaces, and may facilitate the development of biomimetic anti-adhesive surfaces.


Assuntos
Besouros/fisiologia , Fenômenos Fisiológicos Vegetais , Animais , Microscopia Eletrônica de Varredura , Propriedades de Superfície
10.
PLoS One ; 7(9): e45735, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23049849

RESUMO

Among trapping mechanisms in carnivorous plants, those termed 'active' have especially fascinated scientists since Charles Darwin's early works because trap movements are involved. Fast snap-trapping and suction of prey are two of the most spectacular examples for how these plants actively catch animals, mainly arthropods, for a substantial nutrient supply. We show that Drosera glanduligera, a sundew from southern Australia, features a sophisticated catapult mechanism: Prey animals walking near the edge of the sundew trigger a touch-sensitive snap-tentacle, which swiftly catapults them onto adjacent sticky glue-tentacles; the insects are then slowly drawn within the concave trap leaf by sticky tentacles. This is the first detailed documentation and analysis of such catapult-flypaper traps in action and highlights a unique and surprisingly complex mechanical adaptation to carnivory.


Assuntos
Carnivoridade , Plantas/metabolismo , Adaptação Fisiológica , Animais , Fenômenos Biomecânicos , Biofísica/métodos , Dípteros , Drosera , Processamento de Imagem Assistida por Computador , Movimento (Física) , Movimento , Folhas de Planta , Estresse Mecânico
11.
Beilstein J Nanotechnol ; 3: 57-64, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22428097

RESUMO

Plant surfaces showing hierarchical structuring are frequently found in plant organs such as leaves, petals, fruits and stems. In our study we focus on the level of cell shape and on the level of superimposed microstructuring, leading to hierarchical surfaces if both levels are present. While it has been shown that epicuticular wax crystals and cuticular folds strongly reduce insect attachment, and that smooth papillate epidermal cells in petals improve the grip of pollinators, the impact of hierarchical surface structuring of plant surfaces possessing convex or papillate cells on insect attachment remains unclear. We performed traction experiments with male Colorado potato beetles on nine different plant surfaces with different structures. The selected plant surfaces showed epidermal cells with either tabular, convex or papillate cell shape, covered either with flat films of wax, epicuticular wax crystals or with cuticular folds. On surfaces possessing either superimposed wax crystals or cuticular folds we found traction forces to be almost one order of magnitude lower than on surfaces covered only with flat films of wax. Independent of superimposed microstructures we found that convex and papillate epidermal cell shapes slightly enhance the attachment ability of the beetles. Thus, in plant surfaces, cell shape and superimposed microstructuring yield contrary effects on the attachment of the Colorado potato beetle, with convex or papillate cells enhancing attachment and both wax crystals or cuticular folds reducing attachment. However, the overall magnitude of traction force mainly depends on the presence or absence of superimposed microstructuring.

12.
J Exp Bot ; 63(1): 191-201, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21914660

RESUMO

Root climbers such as English ivy (Hedera helix) rely on specialized adventitious roots for attachment, enabling the plants to climb on a wide range of natural and artificial substrates. Despite their importance for the climbing habit, the biomechanical properties of these specialized adventitious roots compared with standard roots and their performance in the attachment to different host species or inert substrates have not been studied. Here organs and tissues involved in the attachment are characterized and their significance in regard to a broader functional and ecological aspect is discussed. Depending on the substrate, the root clusters show different types of failure modes at various frequencies, demonstrating the close interaction between the climber and its substrates. With a Young's Modulus of 109.2 MPa, the attachment roots are relatively stiff for non-woody roots. The central cylinders of the attachment roots show a high tensile strength of 38 MPa and a very high extensibility of 34%. In host trees naturally co-distributed with English ivy, a 'balanced' occurrence of failure of the attachment system of the climber and the bark of the host is found, suggesting a co-evolution of climber and host. Maximum loads of root clusters normalized by the number of roots match those of individually tested attachment roots. In comparison with most subterranean roots the properties and structure of the attachment roots of English ivy show distinct differences. There exist similarities to the properties found for roots of Galium aparine, suggesting a trend in not fully self-supporting plants towards a higher extensibility.


Assuntos
Ecologia , Hedera/fisiologia , Raízes de Plantas/fisiologia , Resistência à Tração
13.
J R Soc Interface ; 9(66): 127-35, 2012 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-21642366

RESUMO

Plant surfaces covered with three-dimensional (3D) waxes are known to strongly reduce insect adhesion, leading to slippery surfaces. Besides 3D epicuticular waxes, cuticular folds are a common microstructure found on plant surfaces, which have not been quantitatively investigated with regard to their influence on insect adhesion. We performed traction experiments with Colorado potato beetles on five plant surfaces with cuticular folds of different magnitude. For comparison, we also tested (i) smooth plant surfaces and (ii) plant surfaces possessing 3D epicuticular waxes. Traction forces on surfaces with medium cuticular folds, of about 0.5 µm in both height and thickness and a spacing of 0.5-1.5 µm, were reduced by an average of 88 per cent in comparison to smooth plant surfaces. Traction forces were reduced by the same order of magnitude as on plant surfaces covered with 3D epicuticular waxes. For surface characterization, we performed static contact angle measurements, which proved a strong effect of cuticular folds also on surface wettability. Surfaces possessing cuticular folds of greater magnitude showed higher contact angles up to superhydrophobicity. We hypothesize that cuticular folds reduce insect adhesion mainly due to a critical roughness, reducing the real contact area between the surface and the insect's adhesive devices.


Assuntos
Besouros/fisiologia , Plantas/anatomia & histologia , Animais , Fenômenos Biomecânicos , Besouros/anatomia & histologia , Besouros/ultraestrutura , Folhas de Planta/anatomia & histologia , Folhas de Planta/ultraestrutura , Plantas/ultraestrutura , Propriedades de Superfície
14.
Ann Biomed Eng ; 39(10): 2531-41, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21692004

RESUMO

Mechanobiological theories have been introduced to illustrate the interaction between biology and the local mechanical environment during bone healing. Although several theories have been proposed, a quantitative validation using histomorphometric data is still missing. In this study, in vivo histological data based on an ovine animal experiment was quantified and used to validate bone healing simulations focussing on the endochondral ossification process. The bone formation at different callus regions (periosteal and endosteal bone at the medial and lateral side) was analyzed from in vivo data and quantitatively compared with in silico results. A histomorphometric difference was found in medial and lateral hard callus formation 3 weeks after osteotomy. However, the same amount of new bone was formed on both sides between week 3 and 6. Using a parametric approach, distinct ranges for mechanical strain levels regulating tissue formation were found, for which the in silico prediction agrees with the in vivo endochondral ossification both in pattern and quantity. According to this finding, a strain range of 1 to 8% seems to be conducive for cartilage formation while bone formation may be facilitated by strains up to 4%. This study demonstrates the potential of a thorough validation of in silico results for gaining a better understanding of mechanobiological mechanisms during bone healing.


Assuntos
Calo Ósseo/fisiologia , Análise de Elementos Finitos , Consolidação da Fratura/fisiologia , Osteogênese/fisiologia , Animais , Cartilagem Articular/fisiologia , Módulo de Elasticidade , Fraturas Ósseas , Modelos Animais , Modelos Biológicos , Osteotomia , Carneiro Doméstico , Estresse Mecânico
15.
J Orthop Res ; 28(11): 1440-7, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20872579

RESUMO

Secondary fracture healing in long bones leads to the successive formation of intricate patterns of tissues in the newly formed callus. The main aim of this work was to quantitatively describe the topology of these tissue patterns at different stages of the healing process and to generate averaged images of tissue distribution. This averaging procedure was based on stained histological sections (2, 3, 6, and 9 weeks post-operatively) of 64 sheep with a 3 mm tibial mid-shaft osteotomy, stabilized either with a rigid or a semi-rigid external fixator. Before averaging, histological images were sorted for topology according to six identified tissue patterns. The averaged images were obtained for both fixation types and the lateral and medial side separately. For each case, the result of the averaging procedure was a collection of six images characterizing quantitatively the progression of the healing process. In addition, quantified descriptions of the newly formed cartilage and the bone area fractions (BA/TA) of the bony callus are presented. For all cases, a linear increase in the BA/TA of the bony callus was observed. The slope was greatest in the case of the most rigid stabilization and lowest in the case of the least stiff. This topological description of the progression of bone healing will allow quantitative validation (or falsification) of current mechano-biological theories.


Assuntos
Consolidação da Fratura , Animais , Fenômenos Biomecânicos , Feminino , Modelos Lineares , Modelos Animais , Osteotomia , Ovinos
16.
J R Soc Interface ; 7(50): 1383-9, 2010 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-20462880

RESUMO

English ivy (Hedera helix L.) is able to grow on vertical substrates such as trees, rocks and house plaster, thereby attaching so firmly to the surface that when removed by force typically whole pieces of the climbing substrate are torn off. The structural details of the attachment process are not yet entirely understood. We studied the attachment process of English ivy in detail and suggest a four-phase process to describe the attachment strategy: (i) initial physical contact, (ii) form closure of the root with the substrate, (iii) chemical adhesion, and (iv) shape changes of the root hairs and form-closure with the substrate. These four phases and their variations play an important role in the attachment to differently structured surfaces. We demonstrate that, in English ivy, different mechanisms work together to allow the plant's attachment to various climbing substrates and reveal the importance of micro-fibril orientation in the root hairs for the attachment based on structural changes at the subcellular level.


Assuntos
Hedera/crescimento & desenvolvimento , Hedera/metabolismo , Hedera/ultraestrutura , Lignina/metabolismo , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Raízes de Plantas/ultraestrutura , Propriedades de Superfície
17.
Proc Biol Sci ; 277(1691): 2113-20, 2010 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-20236971

RESUMO

This study reveals in detail the mechanism of self-repair during secondary growth in the vines Aristolochia macrophylla and Aristolochia ringens based on morphological data. For a comprehensive understanding of the underlying mechanisms during the self-repair of lesions in the sclerenchymatous cylinder of the stem, which are caused by internal growth stresses, a classification of morphological changes in the cells involved in the repair process is required. In an early stage of self-repair, we observed morphological changes as a mere extension of the turgescent cortex cells surrounding the lesion, whereby the cell wall extends locally through visco-elastic/plastic deformation without observable cell wall synthesis. Later stages involve typical cell growth and cell division. Several successive phases of self-repair were investigated by light microscopy of stained samples and confocal laser-scanning microscopy in fluorescence mode. The results indicate that A. macrophylla and A. ringens respond to lesions caused by internal growth stresses with a sophisticated self-repair mechanism comprising several phases of different repair modes.


Assuntos
Aristolochia/crescimento & desenvolvimento , Caules de Planta/citologia , Caules de Planta/crescimento & desenvolvimento , Cicatrização/fisiologia , Aristolochia/anatomia & histologia , Fenômenos Biomecânicos , Especificidade da Espécie
18.
Integr Comp Biol ; 50(5): 888-907, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21558248

RESUMO

Plant and animal biomechanists have much in common. Although their frame of reference differs, they think about the natural world in similar ways. While researchers studying animals might explore airflow around flapping wings, the actuation of muscles in arms and legs, or the material properties of spider silk, researchers studying plants might explore the flow of water around fluttering seaweeds, the grasping ability of climbing vines, or the material properties of wood. Here we summarize recent studies of plant biomechanics highlighting several current research themes in the field: expulsion of high-speed reproductive projectiles, generation of slow movements by shrinking and swelling cell walls, effects of ontogenetic shifts in mechanical properties of stems, flexible reconfiguration and material properties of seaweeds under crashing waves, and the development of botanically-inspired commercial products. Our hope is that this synopsis will resonate with both plant and animal biologists, encourage cross-pollination across disciplines, and promote fruitful interdisciplinary collaborations in the future.


Assuntos
Fenômenos Biomecânicos , Fenômenos Fisiológicos Vegetais , Plantas , Basidiomycota/crescimento & desenvolvimento , Basidiomycota/fisiologia , Cornus/crescimento & desenvolvimento , Cornus/fisiologia , Desenvolvimento Vegetal , Alga Marinha/crescimento & desenvolvimento , Alga Marinha/fisiologia , Sphagnopsida/crescimento & desenvolvimento , Sphagnopsida/fisiologia
19.
Micron ; 39(2): 198-205, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-17395472

RESUMO

A fully automated procedure to extract and to image local fibre orientation in biological tissues from scanning X-ray diffraction is presented. The preferred chitin fibre orientation in the flow sensing system of crickets is determined with high spatial resolution by applying synchrotron radiation based X-ray microbeam diffraction in conjunction with advanced sample sectioning using a UV micro-laser. The data analysis is based on an automated detection of azimuthal diffraction maxima after 2D convolution filtering (smoothing) of the 2D diffraction patterns. Under the assumption of crystallographic fibre symmetry around the morphological fibre axis, the evaluation method allows mapping the three-dimensional orientation of the fibre axes in space. The resulting two-dimensional maps of the local fibre orientations - together with the complex shape of the flow sensing system - may be useful for a better understanding of the mechanical optimization of such tissues.


Assuntos
Quitina/ultraestrutura , Gryllidae/ultraestrutura , Células Receptoras Sensoriais/ultraestrutura , Difração de Raios X , Animais , Quitina/química , Processamento de Imagem Assistida por Computador/instrumentação , Processamento de Imagem Assistida por Computador/métodos , Microscopia Eletrônica de Varredura/instrumentação , Microscopia Eletrônica de Varredura/métodos , Órgãos dos Sentidos/química , Órgãos dos Sentidos/ultraestrutura , Células Receptoras Sensoriais/química , Difração de Raios X/instrumentação , Difração de Raios X/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...