Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
JMIR Med Inform ; 11: e44773, 2023 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-38015593

RESUMO

BACKGROUND: The medical teams in intensive care units (ICUs) spend increasing amounts of time at computer systems for data processing, input, and interpretation purposes. As each patient creates about 1000 data points per hour, the available information is abundant, making the interpretation difficult and time-consuming. This data flood leads to a decrease in time for evidence-based, patient-centered care. Information systems, such as patient data management systems (PDMSs), are increasingly used at ICUs. However, they often create new challenges arising from the increasing documentation burden. OBJECTIVE: New concepts, such as artificial intelligence (AI)-based assistant systems, are hence introduced to the workflow to cope with these challenges. However, there is a lack of standardized, published metrics in order to compare the various data input and management systems in the ICU setting. The objective of this study is to compare established documentation and retrieval processes with newer methods, such as PDMSs and voice information and documentation systems (VIDSs). METHODS: In this crossover study, we compare traditional, paper-based documentation systems with PDMSs and newer AI-based VIDSs in terms of performance (required time), accuracy, mental workload, and user experience in an intensive care setting. Performance is assessed on a set of 6 standardized, typical ICU tasks, ranging from documentation to medical interpretation. RESULTS: A total of 60 ICU-experienced medical professionals participated in the study. The VIDS showed a statistically significant advantage compared to the other 2 systems. The tasks were completed significantly faster with the VIDS than with the PDMS (1-tailed t59=12.48; Cohen d=1.61; P<.001) or paper documentation (t59=20.41; Cohen d=2.63; P<.001). Significantly fewer errors were made with VIDS than with the PDMS (t59=3.45; Cohen d=0.45; P=.03) and paper-based documentation (t59=11.2; Cohen d=1.45; P<.001). The analysis of the mental workload of VIDS and PDMS showed no statistically significant difference (P=.06). However, the analysis of subjective user perception showed a statistically significant perceived benefit of the VIDS compared to the PDMS (P<.001) and paper documentation (P<.001). CONCLUSIONS: The results of this study show that the VIDS reduced error rate, documentation time, and mental workload regarding the set of 6 standardized typical ICU tasks. In conclusion, this indicates that AI-based systems such as the VIDS tested in this study have the potential to reduce this workload and improve evidence-based and safe patient care.

2.
Atten Percept Psychophys ; 77(6): 1881-95, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25898897

RESUMO

Looking for objects in cluttered natural environments is a frequent task in everyday life. This process can be difficult, because the features, locations, and times of appearance of relevant objects often are not known in advance. Thus, a mechanism by which attention is automatically biased toward information that is potentially relevant may be helpful. We tested for such a mechanism across five experiments by engaging participants in real-world visual search and then assessing attentional capture for information that was related to the search set but was otherwise irrelevant. Isolated objects captured attention while preparing to search for objects from the same category embedded in a scene, as revealed by lower detection performance (Experiment 1A). This capture effect was driven by a central processing bottleneck rather than the withdrawal of spatial attention (Experiment 1B), occurred automatically even in a secondary task (Experiment 2A), and reflected enhancement of matching information rather than suppression of nonmatching information (Experiment 2B). Finally, attentional capture extended to objects that were semantically associated with the target category (Experiment 3). We conclude that attention is efficiently drawn towards a wide range of information that may be relevant for an upcoming real-world visual search. This mechanism may be adaptive, allowing us to find information useful for our behavioral goals in the face of uncertainty.


Assuntos
Atenção , Percepção Visual , Adulto , Meio Ambiente , Feminino , Humanos , Masculino , Estimulação Luminosa , Detecção de Sinal Psicológico , Adulto Jovem
3.
Curr Opin Behav Sci ; 1: 32-39, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27398396

RESUMO

Human frontoparietal cortex has long been implicated as a source of attentional control. However, the mechanistic underpinnings of these control functions have remained elusive due to limitations of neuroimaging techniques that rely on anatomical landmarks to localize patterns of activation. The recent advent of topographic mapping via functional magnetic resonance imaging (fMRI) has allowed the reliable parcellation of the network into 18 independent subregions in individual subjects, thereby offering unprecedented opportunities to address a wide range of empirical questions as to how mechanisms of control operate. Here, we review the human neuroimaging literature that has begun to explore space-based, feature-based, object-based and category-based attentional control within the context of topographically defined frontoparietal cortex.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...