Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 412
Filtrar
1.
J Mater Chem B ; 12(14): 3356-3375, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38505950

RESUMO

Clinical advances in genetically modified immune cell therapies, such as chimeric antigen receptor T cell therapies, have raised hope for cancer treatment. The majority of these biotechnologies are based on viral methods for ex vivo genetic modification of the immune cells, while the non-viral methods are still in the developmental phase. Nanocarriers have been emerging as materials of choice for gene delivery to immune cells. This is due to their versatile physicochemical properties such as large surface area and size that can be optimized to overcome several practical barriers to successful gene delivery. The in vivo nanocarrier-based gene delivery can revolutionize cell-based cancer immunotherapies by replacing the current expensive autologous cell manufacturing with an off-the-shelf biomaterial-based platform. The aim of this research is to review current advances and strategies to overcome the challenges in nanoparticle-based gene delivery and their impact on the efficiency, safety, and specificity of the process. The main focus is on polymeric and lipid-based nanocarriers, and their recent preclinical applications for cancer immunotherapy.


Assuntos
Terapia Genética , Imunoterapia Adotiva , Imunoterapia Adotiva/métodos , Técnicas de Transferência de Genes , Imunoterapia/métodos , Engenharia Celular
2.
J Infect Public Health ; 17(2): 329-338, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38194764

RESUMO

BACKGROUND: Because of the rise in antibiotic resistance and the control of pathogenicity, polymicrobial bacterial biofilms exacerbate wound infections. Since bacterial quorum sensing (QS) signals can dysregulate biofilm development, they are interesting therapeutic treatments. In this study, Pseudomonas Quinolone Signal (PQS) was used to treat an animal model of a wound that had both Staphylococcus aureus and Pseudomonas aeruginosa co-infection. METHODS: S. aureus and P. aeruginosa mono- and co-infection models were developed in vitro on the L-929 cell line and in an animal model of wound infection. Moreover, PQS was extracted and purified using liquid chromatography. Then, the mono- and co-infection models were treated by PQS in vitro and in vivo. RT-PCR analysis was used to look into changes in biofilm, QS, tissue regeneration, and apoptosis genes after the treatment. RESULTS: PQS significantly disrupted established biofilm up to 90% in both in vitro and in vivo models. Moreover, a 93% reduction in the viability of S. aureus and P. aeruginosa was detected during the 10 days of treatment in comparison to control groups. In addition, the biofilm-encoding and QS-regulating genes were down-regulated to 75% in both microorganisms. Also, fewer epithelial cells died when treated with PQS compared to control groups in both mono- and co-infection groups. CONCLUSION: According to this study, PQS may facilitate wound healing by stimulating the immune system and reducing apoptosis. It seems to be a potential medication to use in conjunction with antibiotics to treat infections that are difficult to treat.


Assuntos
Coinfecção , Pseudomonas aeruginosa , Quinolonas , Animais , Staphylococcus aureus , Coinfecção/tratamento farmacológico , Percepção de Quorum , Biofilmes , Modelos Animais , Proteínas de Bactérias/genética
3.
Int J Biol Macromol ; 258(Pt 1): 128917, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38134992

RESUMO

Critical sized craniofacial defects are among the most challenging bone defects to repair, due to the anatomical complexity and aesthetic importance. In this study, a polylactic acid/hardystonite-graphene oxide (PLA/HTGO) scaffold was fabricated through 3D printing. In order to upgrade the 3D printed scaffold to a highly porous scaffold, its channels were filled with pectin-quaternized chitosan (Pec-QCs) polyelectrolyte solution containing 0 or 20 mg/mL of simvastatin (Sim) and then freeze-dried. These scaffolds were named FD and FD-Sim, respectively. Also, similar PLA/HTGO scaffolds were prepared and dip coated with Pec-QCs solution containing 0 or 20 mg/mL of Sim and were named DC and DC-Sim, respectively. The formation of macro/microporous structure was confirmed by morphological investigations. The release of Sim from DC-Sim and FD-Sim scaffolds after 28 days was measured as 77.40 ± 5.25 and 86.02 ± 3.63 %, respectively. Cytocompatibility assessments showed that MG-63 cells had the highest proliferation, attachment and spread on the Sim containing scaffolds, especially FD-Sim. In vivo studies on a rat calvarial defect model revealed that an almost complete recovery occurred in the group treated with FD-Sim scaffold after 8 weeks and the defect was filled with newly formed bone. The results of this study acknowledge that the FD-Sim scaffold can be a perfect candidate for calvarial defect repair.


Assuntos
Quitosana , Grafite , Sinvastatina , Ratos , Animais , Alicerces Teciduais/química , Polieletrólitos , Regeneração Óssea , Osteogênese , Poliésteres , Impressão Tridimensional , Engenharia Tecidual
4.
Biomater Adv ; 154: 213657, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37844415

RESUMO

Gene therapy involves replacing a faulty gene or adding a new gene inside the body's cells to cure disease or improve the body's ability to fight disease. Its popularity is evident from emerging concepts such as CRISPR-based genome editing and epigenetic studies and has been moved to a clinical setting. The strategy for therapeutic gene design includes; suppressing the expression of pathogenic genes, enhancing necessary protein production, and stimulating the immune system, which can be incorporated into both viral and non-viral gene vectors. Although non-viral gene delivery provides a safer platform, it suffers from an inefficient rate of gene transfection, which means a few genes could be successfully transfected and expressed within the cells. Incorporating nucleic acids into the viruses and using these viral vectors to infect cells increases gene transfection efficiency. Consequently, more cells will respond, more genes will be expressed, and sustained and successful gene therapy can be achieved. Combining nanoparticles (NPs) and nucleic acids protects genetic materials from enzymatic degradation. Furthermore, the vectors can be transferred faster, facilitating cell attachment and cellular uptake. Magnetically assisted viral transduction (magnetofection) enhances gene therapy efficiency by mixing magnetic nanoparticles (MNPs) with gene vectors and exerting a magnetic field to guide a significant number of vectors directly onto the cells. This research critically reviews the MNPs and the physiochemical properties needed to assemble an appropriate magnetic viral vector, discussing cellular hurdles and attitudes toward overcoming these barriers to reach clinical gene therapy perspectives. We focus on the studies conducted on the various applications of magnetic viral vectors in cancer therapies, regenerative medicine, tissue engineering, cell sorting, and virus isolation.


Assuntos
Ácidos Nucleicos , Vírus , Transfecção , Vetores Genéticos/genética , Técnicas de Transferência de Genes , Ácidos Nucleicos/genética , Vírus/genética
5.
Int J Biol Macromol ; 253(Pt 2): 126700, 2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-37673152

RESUMO

In the current study, a core-shell nanofibrous wound dressing based on Pluronic-F127 (F127) containing 2 wt% mupirocin (Mup) core and pectin (Pec)-keratin (Kr) shell was fabricated through coaxial electrospinning technique, and the blended nanofibers were also fabricated from the same materials. The fiber diameter and specific surface area of the blended nanofibers were about 101.56 nm and 20.16 m2/g, while for core-shell nanofibers they were about 97.32 nm and 25.26 m2/g, respectively. The resultant blended and core-shell nanofibers experienced a degradation of 27.65 % and 32.28 % during 7 days, respectively. The drug release profile of core-shell nanofibers revealed a sustained release of Mup over 7 days (87.66 %), while the blended F127-Pec-Kr-Mup nanofibers had a burst release within the first few hours (89.38 % up to 48 h) and a cumulative release of 91.36 % after 7 days. Due to the controlled release of Mup, the core-shell structure significantly improved the human keratinocytes behavior, angiogenic potential and wound healing in a rat model compared to the blended structure. In conclusion, the F127-Mup/Pec-Kr core-shell nanofibrous wound dressing appears to be a promising candidate for the prevention of infection, and can potentially accelerate the recovery and healing of chronic and ischemic wounds.


Assuntos
Mupirocina , Nanofibras , Humanos , Ratos , Animais , Mupirocina/farmacologia , Nanofibras/química , Poloxâmero , Queratinas , Pectinas/farmacologia , Cicatrização , Queratinócitos
6.
Int J Pharm ; 645: 123357, 2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37647978

RESUMO

A multi-layered scaffold can mimic the hierarchical structure of the skin, accelerate the wound healing, and protect the skin against contamination and infection. In this study, a three-layered (3L) scaffold was manufactured through a combination of 3D printing and electrospinning technique. A top layer of polyurethane (PU) nanofibrous coating for the prevention of micro-organism penetration was created through electrospining. The middle layer was prepared through the 3D printing of Pluronic F127-quaternized chitosan-silver nitrate nanoparticles (F127-QCS-AgNO3), as the porous absorbent and antibacterial layer. A bottom layer of core-shell nanofibrous structure of F127-mupirocin/pectin-keratin (F127-Mup/Pec-Kr) for tissue regeneration and enable antibacterial activity was coated onto the middle layer. A range of techniques were applied to fully characterize the resultant structure. The average tensile strength and elastic modulus of the 3L scaffold were measured as 0.65 ± 0.08 MPa and 9.37 ± 2.33 MPa, respectively. The release of Ag ions, mupirocin (Mup), and the antibacterial activity of the dressings was investigated. According to the results, the highest rate of cell adhesion and viability, and angiogenic potential among the studied samples were related to the 3L scaffold, which was also found to significantly accelerate the wound healing.


Assuntos
Quitosana , Nanofibras , Mupirocina , Alicerces Teciduais/química , Cicatrização , Antibacterianos/farmacologia , Antibacterianos/química , Quitosana/química , Impressão Tridimensional , Nanofibras/química
7.
Mater Today Bio ; 20: 100614, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37008830

RESUMO

Repairing central nervous system (CNS) is difficult due to the inability of neurons to recover after damage. A clinically acceptable treatment to promote CNS functional recovery and regeneration is currently unavailable. According to recent studies, injectable hydrogels as biodegradable scaffolds for CNS tissue engineering and regeneration have exceptionally desirable attributes. Hydrogel has a biomimetic structure similar to extracellular matrix, hence has been considered a 3D scaffold for CNS regeneration. An interesting new type of hydrogel, injectable hydrogels, can be injected into target areas with little invasiveness and imitate several aspects of CNS. Injectable hydrogels are being researched as therapeutic agents because they may imitate numerous properties of CNS tissues and hence reduce subsequent injury and regenerate neural tissue. Because of their less adverse effects and cost, easier use and implantation with less pain, and faster regeneration capacity, injectable hydrogels, are more desirable than non-injectable hydrogels. This article discusses the pathophysiology of CNS and the use of several kinds of injectable hydrogels for brain and spinal cord tissue engineering, paying particular emphasis to recent experimental studies.

8.
Int J Biol Macromol ; 236: 124005, 2023 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-36907296

RESUMO

Burn injuries are a major global problem, with a high risk of infection and mortality. This study aimed to develop an injectable hydrogel for wound dressings, composed of sodium carboxymethylcellulose/polyacrylamide/polydopamine containing vitamin C (CMC/PAAm/PDA VitC) for its antioxidant and antibacterial properties. Simultaneously, silk fibroin/alginate nanoparticles (SF/SANPs) loaded with curcumin (SF/SANPs CUR) were incorporated into the hydrogel to enhance wound regeneration and reduce bacterial infection. The hydrogels were fully characterized and tested in vitro and in preclinical rat models for biocompatibility, drug release, and wound healing efficacy. Results showed stable rheological properties, appropriate swelling and degradation ratios, gelation time, porosity, and free radical scavenging capacity. Biocompatibility was confirmed through MTT, lactate dehydrogenase, and apoptosis evaluations. Hydrogels containing curcumin demonstrated antibacterial activity against methicillin-resistant Staphylococcus aureus (MRSA). In the preclinical study, hydrogels containing both drugs showed superior support for full-thickness burn regeneration, with improved wound closure, re-epithelialization, and collagen expression. The hydrogels also showed neovascularization and anti-inflammatory effects, as confirmed by CD31 and TNF-α markers. In conclusion, these dual drug-delivery hydrogels showed significant potential as wound dressings for full-thickness wounds.


Assuntos
Queimaduras , Curcumina , Staphylococcus aureus Resistente à Meticilina , Ratos , Animais , Pele , Carboximetilcelulose Sódica/farmacologia , Ácido Ascórbico/farmacologia , Ácido Ascórbico/metabolismo , Curcumina/farmacologia , Curcumina/metabolismo , Hidrogéis/farmacologia , Hidrogéis/metabolismo , Queimaduras/tratamento farmacológico , Queimaduras/metabolismo , Antibacterianos/farmacologia , Antibacterianos/metabolismo
9.
J Control Release ; 349: 67-96, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35779656

RESUMO

The key issue in the treatment of solid tumors is the lack of efficient strategies for the targeted delivery and accumulation of therapeutic cargoes in the tumor microenvironment (TME). Targeting approaches are designed for more efficient delivery of therapeutic agents to cancer cells while minimizing drug toxicity to normal cells and off-targeting effects, while maximizing the eradication of cancer cells. The highly complicated interrelationship between the physicochemical properties of nanoparticles, and the physiological and pathological barriers that are required to cross, dictates the need for the success of targeting strategies. Dual targeting is an approach that uses both purely biological strategies and physicochemical responsive smart delivery strategies to increase the accumulation of nanoparticles within the TME and improve targeting efficiency towards cancer cells. In both approaches, either one single ligand is used for targeting a single receptor on different cells, or two different ligands for targeting two different receptors on the same or different cells. Smart delivery strategies are able to respond to triggers that are typical of specific disease sites, such as pH, certain specific enzymes, or redox conditions. These strategies are expected to lead to more precise targeting and better accumulation of nano-therapeutics. This review describes the classification and principles of dual targeting approaches and critically reviews the efficiency of dual targeting strategies, and the rationale behind the choice of ligands. We focus on new approaches for smart drug delivery in which synthetic and/or biological moieties are attached to nanoparticles by TME-specific responsive linkers and advanced camouflaged nanoparticles.


Assuntos
Nanopartículas , Neoplasias , Sistemas de Liberação de Medicamentos , Humanos , Ligantes , Nanopartículas/química , Neoplasias/tratamento farmacológico , Microambiente Tumoral
11.
Biotechnol Rep (Amst) ; 34: e00730, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35686000

RESUMO

This review highlights using nanotechnology in increasing the bioavailability of AP (Apigenin) to enhance its therapeutic efficacy in breast cancer treatment. Breast cancer is one of the most leading causes of cancer death in women both in developed and developing countries. According to several epidemiological and clinical trial studies that indicate progestin-stimulated breast cancer in post-menopausal women; it is necessary to determine compounds to suppress or attenuate the tumor-promoting effects of progestins in breast cells. For this purpose, using the natural anti-progestins, including AP compared with the chemical ones could be significantly effective due to the lack of toxicities and contradiction effects. However, AP is categorized as a Class II drug of Biopharmaceutical Classification System with low solubility in water which limited its therapeutic effects. Therefore, nanotechnology due to the presentation of remarkable properties has overcome this limitation through enhanced the solubility and bioavailability of AP. In this regard, various nanocarriers such as nanocrystals, micelles, liposomes, PLGA, etc., have highlighted the significantly increased bioavailability and therapeutic efficacy of AP. Therefore, we will focus on the anticancer effects of AP in breast cancers, including involved mechanisms, the chemistry of AP and its bioavailability, finally different nanostructure systems to enhance the bioavailability of AP.

12.
AMB Express ; 12(1): 75, 2022 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-35705727

RESUMO

Dental caries and oral infections have become a widespread issue in the modern world. This study aimed to investigate the antibacterial, antifungal, and cytotoxicity characteristics of the extracts of Echinacea purpura, Arctium lappa, and the essential oil of Zataria multiflora as a potential herbal mouthwash. The essential oil of Z. multiflora leaves and the extracts of E. purpurea and A. lappa roots were prepared. The characterization was carried out by GC-MS and also, total phenol and flavonoid were assed for all three samples. The antimicrobial and anti-biofilm effects were evaluated against Streptococcus mutans, Streptococcus mitis, Streptococcus salivarius, Lactobacillus acidophilus, Escherichia coli, Staphylococcus aureus, and Candida albicans. The cytotoxic effect of the samples was evaluated on HEK 293 and HDFa cells by MTT test. Thymol and carvacrol contents in EO of Z. multiflora were measured at 31% and 42.2%, respectively. A. lappa had the lowest total phenolic and flavonoid value among the samples. On the other hand, the total phenolic content of Z. multiflora and the total flavonoid content of E. purpurea were the highest. The MIC values of Zataria, Arctium, and Echinacea against S. mutans were 0.011% v/v, 187.5 mg/ml, and 93.75 mg/ml, while MBC were 0.011% v/v, 375 mg/ml, and 187.5 mg/ml, respectively. The formulation showed bactericidal activity against S. mutans in the concentration of 5.86 mg/ml for Echinacea and Burdock extracts and 0.08 µl/ml for EO of Zataria. The formulation significantly affected microbial biofilm formation and induced biofilm degradation. The cell viability percentages were higher than 50% during 24 and 48 h. The formulation had a significant antimicrobial effect on cariogenic bacteria and C. albicans, with the lowest cytotoxic effects. Therefore, this formulation can be an appropriate candidate for mouthwash.

13.
Adv Pharm Bull ; 12(2): 356-365, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35620328

RESUMO

Purpose: Stem cells can exhibit restorative effects with the commitment to functional cells.Cell-imprinted topographies provide adaptable templates and certain dimensions for thedifferentiation and bioactivity of stem cells. Cell sheet technology using the thermo-responsivepolymers detaches the "cell sheets" easier with less destructive effects on the extracellularmatrix (ECM). Here, we aim to dictate keratinocyte-like differentiation of mesenchymal stemcells (MSCs) by using combined cell imprinting and sheet technology. Methods: We developed the poly dimethyl siloxane (PDMS) substrate having keratinocytecell-imprinted topography grafted with the PNIPAAm polymer. Adipose tissue-derived MSCs(AT-MSCs) were cultured on PDMS substrate for 14 days and keratinocyte-like differentiationmonitored via the expression of involucrin, P63, and cytokeratin 14. Results: Data showed the efficiency of the current protocol in the fabrication of PDMSmolds. The culture of AT-MSCs induced typical keratinocyte morphology and up-regulatedthe expression of cytokeratin-14, Involucrin, and P63 compared to AT-MSCs cultured on theplastic surface (P < 0.05). Besides, KLC sheets were generated once slight changes occur in theenvironment temperature. Conclusion: These data showed the hypothesis that keratinocyte cell imprinted substrate canorient AT-MSCs toward KLCs by providing a specific niche and topography.

14.
Stem Cell Rev Rep ; 18(8): 2566-2592, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35508757

RESUMO

Cardiovascular diseases (CVDs) are globally known to be important causes of mortality and disabilities. Common treatment strategies for CVDs, such as pharmacological therapeutics impose serious challenges due to the failure of treatments for myocardial necrosis. By contrast, stem cells (SCs) based therapies are seen to be promising approaches to CVDs treatment. In such approaches, cardiomyocytes are differentiated from SCs. To fulfill SCs complete potential, the method should be appointed to generate cardiomyocytes with more mature structure and well-functioning operations. For heart repairing applications, a greatly scalable and medical-grade cardiomyocyte generation must be used. Nonetheless, there are some challenges such as immune rejection, arrhythmogenesis, tumorigenesis, and graft cell death potential. Herein, we discuss the types of potential SCs, and commonly used methods including embryoid bodies related techniques, co-culture, mechanical stimulation, and electrical stimulation and their applications, advantages and limitations in this field. An estimated 17.9 million people died from CVDs in 2019, representing 32 % of all global deaths. Of these deaths, 85 % were due to heart attack and stroke.


Assuntos
Miócitos Cardíacos , Células-Tronco , Humanos , Diferenciação Celular/fisiologia , Técnicas de Cocultura
15.
Curr Pharm Des ; 28(36): 2953-2964, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35524677

RESUMO

In 2019, the whole world came together to confront a life-threatening virus named SARS-CoV-2, causing COVID-19 illness. The virus infected the human host by attaching to the ACE2 and CD147 receptors in some human cells, resulting in cytokine storm and death. The new variants of the virus that caused concern are Alpha, Beta, Gamma, Delta, and Epsilon, according to the WHO label. However, Pango lineages designated them as B.1.1.7, B.1.351, P.1, B.1.617.2, and B.1.429. Variants may be progressively formed in one chronic COVID-19 patient and transmitted to others. They show some differences in cellular and molecular mechanisms. Mutations in the receptor-binding domain (RBD) and N-terminal domain (NTD) lead to alterations in the host's physiological responses. They show significantly higher transmissibility rates and viral load while evading neutralizing antibodies at different rates. These effects are through mutations, deletion, and conformational alterations in the virus, resulting in the enhanced affinity of RBD to PD of ACE2 protein, virus entry, and spike conformational change. In the clinical laboratory, new variants may diagnose from other variants using specific primers for RBD or NTD. There are some controversial findings regarding the efficacy of the developed vaccines against the new variants. This research aimed to discuss the cellular and molecular mechanisms beyond COVID-19 pathogenesis, focusing on the new variants. We glanced at why the mutations and the ability to transmit the virus increase and how likely the available vaccines will be effective against these variants.


Assuntos
COVID-19 , Vacinas , Humanos , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus/genética , Proteínas do Envelope Viral/genética , Proteínas do Envelope Viral/metabolismo , Anticorpos Neutralizantes/genética , Mutação
16.
Biomed Res Int ; 2022: 6574997, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35434137

RESUMO

Multimicrobial infections caused by pathobionts are called dysbiotic multimicrobial illnesses. Commercial mouthwashes, such as chlorhexidine, have negative side effects that can prevent tooth decay and infection. The present study aimed to determine the antifungal, antibacterial, and cytotoxicity characteristics of the propolis extracts from different areas (Iran). The ethanolic extract of propolis was prepared. GC/MS carried out the characterization to determine the thymol, carvacrol, and menthol extracts, and also, total phenol and flavonoid were assed for all samples. The antimicrobial and antibiofilm effects were evaluated against S. mutans, S. mitis, S. salivarius, L. acidophilus, E. coli, S. aureus, and C. albicans. The cytotoxic effect of extracts was measured on human fibroblast cells by MTT test. The MIC values in mg mL-1 were ranged as follows: S. salivarius (0.003 to 0.048), S. mutans (0.003 to 0.029), S. mitis (0.007 to 0.058), L. acidophilus (0.007 to 0.117), C. albicans (0.014 to 0.234), E. coli (0.007 to 0.058), and S. aureus (0.007 to 0.058), while MBC were, respectively, S. mutans (0.007 to 0.058), S. salivarius (0.007 to 0.117), S. mitis (0.007 to 0.117), L. acidophilus (0.014 to 0.234), C. albicans (0.029 to 0.468), E. coli (0.014 to 0.234), and S. aureus (0.007 to 0.117). Cariogenic bacteria and Candida albicans were demonstrated to be resistant to propolis extracts. Therefore, propolis extracts may make good mouthwashes.


Assuntos
Própole , Antibacterianos/farmacologia , Candida albicans , Escherichia coli , Fibroblastos , Humanos , Irã (Geográfico) , Lactobacillus acidophilus , Testes de Sensibilidade Microbiana , Antissépticos Bucais/farmacologia , Extratos Vegetais/farmacologia , Própole/química , Própole/farmacologia , Staphylococcus aureus
17.
Int Wound J ; 19(7): 1934-1954, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35297170

RESUMO

Wound healing is a complex process in tissue regeneration through which the body responds to the dissipated cells as a result of any kind of severe injury. Diabetic and non-healing wounds are considered an unmet clinical need. Currently, different strategic approaches are widely used in the treatment of acute and chronic wounds which include, but are not limited to, tissue transplantation, cell therapy and wound dressings, and the use of an instrument. A large number of literatures have been published on this topic; however, the most effective clinical treatment remains a challenge. The wound dressing involves the use of a scaffold, usually using biomaterials for the delivery of medication, autologous stem cells, or growth factors from the blood. Antibacterial and anti-inflammatory drugs are also used to stop the infection as well as accelerate wound healing. With an increase in the ageing population leading to diabetes and associated cutaneous wounds, there is a great need to improve the current treatment strategies. This research critically reviews the current advancement in the therapeutic and clinical approaches for wound healing and tissue regeneration. The results of recent clinical trials suggest that the use of modern dressings and skin substitutes is the easiest, most accessible, and most cost-effective way to treat chronic wounds with advances in materials science such as graphene as 3D scaffold and biomolecules hold significant promise. The annual market value for successful wound treatment exceeds over $50 billion US dollars, and this will encourage industries as well as academics to investigate the application of emerging smart materials for modern dressings and skin substitutes for wound therapy.


Assuntos
Bandagens , Pele Artificial , Humanos , Cicatrização , Materiais Biocompatíveis , Peptídeos e Proteínas de Sinalização Intercelular
18.
Bioinorg Chem Appl ; 2022: 2311910, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35281331

RESUMO

Orodental problems have long been managed using herbal medicine. The development of nanoparticle formulations with herbal medicine has now become a breakthrough in dentistry because the synthesis of biogenic metal nanoparticles (MNPs) using plant extracts can address the drawbacks of herbal treatments. Green production of MNPs such as Ag, Au, and Fe nanoparticles enhanced by plant extracts has been proven to be beneficial in managing numerous orodental disorders, even outperforming traditional materials. Nanostructures are utilized in dental advances and diagnostics. Oral disease prevention medicines, prostheses, and tooth implantation all employ nanoparticles. Nanomaterials can also deliver oral fluid or pharmaceuticals, treating oral cancers and providing a high level of oral healthcare. These are also found in toothpaste, mouthwash, and other dental care products. However, there is a lack of understanding about the safety of nanomaterials, necessitating additional study. Many problems, including medication resistance, might be addressed using nanoparticles produced by green synthesis. This study reviews the green synthesis of MNPs applied in dentistry in recent studies (2010-2021).

19.
Neuropeptides ; 92: 102228, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35101843

RESUMO

Damage to the spinal cord triggers a local complex inflammatory reaction that results in irreversible impairments or complete loss of motor function. The evidence suggested that inhibiting the pro-inflammatory macrophage/microglia (M1 subsets) and stimulating the anti-inflammatory macrophage/microglia (M2 subsets) are potential strategies for the treatment of neuroinflammation-related diseases. We evaluated the potentially protective effect of Ac-SDKP as an endogenous tetrapeptide on rat spinal cord injury (SCI). Wistar rats were subjected to a weight-drop contusion model and were treated with Ac-SDKP (0.8 mg/kg) given subcutaneously once a day for 7 days starting at two clinically relevant times, at 2 h or 6 h post-injury. The effect of Ac-SDKP was assessed by motor functional analysis, real-time PCR (CD86 and CD206 mRNA), western blot (caspase-3), ELISA (TNF-a, IL-10), and histological analysis (toluidine blue staining). Ac-SDKP improved locomotor recovery and rescue motor neuron loss after SCI. Moreover, a decreased in TNF-a level as well as caspase 3 protein levels occurred in the lesion epicenter of the spinal cord following treatment. In addition, CD206 mRNA expression level increased significantly in Ac-SDKP treated rats compared with SCI. Together these data suggest that Ac-SDKP might be a novel immunomodulatory drug. It may be beneficial for the treatment of SCI with regards to increasing CD206 gene expression and suppress inflammatory cytokine to improve motor function and reducing histopathological lesion.


Assuntos
Traumatismos da Medula Espinal , Animais , Oligopeptídeos/farmacologia , Ratos , Ratos Wistar , Recuperação de Função Fisiológica/fisiologia , Medula Espinal/metabolismo , Traumatismos da Medula Espinal/metabolismo
20.
Scanning ; 2022: 5265912, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35116089

RESUMO

The heavy casualties associated with mass disasters necessitate substantial resources to be managed. The unexpectedly violent nature of such occurrences usually remains a problematic amount of victims that urgently require to be identified by a reliable and economical method. Conventional identification methods are inefficient in many cases such as plane crashes and fire accidents that have damaged the macrobiometric features such as fingerprints or faces. An appropriate recognition method for such cases should use features more resistant to destruction. Forensic dentistry provides the most appropriate available method for the successful identification of victims using careful techniques and precise data interpretation. Since bones and teeth are the most persistent parts of the demolished bodies in sudden mass disasters, scanning and radiographs are unrepeatable parts of forensic dentistry. Forensic dentistry as a scientific method of human remain identification has been considerably referred to be efficient in disasters. Forensic dentistry can be used for either "sex and age estimation," "Medical biotechnology techniques," or "identification with dental records," etc. The present review is aimed at discussing the development and implementation of forensic dentistry methods for human identification. For this object, the literature from the last decade has been searched for the innovations in forensic dentistry for human identification based on the PubMed database.


Assuntos
Fatores Biológicos , Antropologia Forense , Odontologia Legal , Humanos , Intensificação de Imagem Radiográfica , Tecnologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...