Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 9(1): e86307, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24497941

RESUMO

Stable resistance to infection with Wheat streak mosaic virus (WSMV) can be evolved de novo in selfing bread wheat lines subjected to cycles of WSMV inoculation and selection of best-performing plants or tillers. To learn whether this phenomenon might be applied to evolve resistance de novo to pathogens unrelated to WSMV, we examined the responses to leaf rust of succeeding generations of the rust- and WSMV-susceptible cultivar 'Lakin' following WSMV inoculation and derived rust-resistant sublines. After three cycles of the iterative protocol five plants, in contrast to all others, expressed resistance to leaf and stripe rust. A subset of descendant sublines of one of these, 'R1', heritably and uniformly expressed the new trait of resistance to leaf rust. Such sublines, into which no genes from a known source of resistance had been introgressed, conferred resistance to progeny of crosses with susceptible parents. The F1 populations produced from crosses between, respectively, susceptible and resistant 'Lakin' sublines 4-3-3 and 4-12-3 were not all uniform in their response to seedling inoculation with race TDBG. In seedling tests against TDBG and MKPS races the F2s from F1 populations that were uniformly resistant had 3∶1 ratios of resistant to susceptible individuals but the F2s from susceptible F1 progenitors were uniformly susceptible. True-breeding lines derived from resistant individuals in F2 populations were resistant to natural stripe and leaf rust inoculum in the field, while the 'Lakin' progenitor was susceptible. The next generation of six of the 'Lakin'-derived lines exhibited moderate to strong de novo resistance to stem rust races TPMK, QFCS and RKQQ in seedling tests while the 'Lakin' progenitor was susceptible. These apparently epigenetic effects in response to virus infection may help researchers fashion a new tool that expands the range of genetic resources already available in adapted germplasm.


Assuntos
Resistência à Doença/genética , Doenças das Plantas/genética , Folhas de Planta/genética , Potyviridae/crescimento & desenvolvimento , Triticum/genética , Basidiomycota/fisiologia , Cruzamentos Genéticos , Interações Hospedeiro-Patógeno , Padrões de Herança/genética , Fenótipo , Doenças das Plantas/microbiologia , Doenças das Plantas/virologia , Folhas de Planta/microbiologia , Folhas de Planta/virologia , Potyviridae/fisiologia , Plântula/genética , Plântula/microbiologia , Plântula/virologia , Seleção Genética , Triticum/microbiologia , Triticum/virologia
2.
Plant Dis ; 97(8): 1051-1056, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30722517

RESUMO

Expressing temperature-sensitive resistance (TSR) protects wheat against yield losses from infection with Wheat streak mosaic virus (WSMV). In examining how 2,429 wheat accessions from the National Small Grains Collection responded to inoculation with the Sid81 isolate of WSMV, 20 candidate TSR sources were discovered. To differentiate their relative effectiveness, accession responses over 21 days to inoculation with GH95, Sid81, and PV57 virus isolates in regimes of 18 and 20°C were observed. At 18°C, all 20 candidate TSR sources were uniformly or nearly uniformly asymptomatic 21 days after inoculation with the PV57 isolate, resistance indistinguishable from resistant checks KS96HW10-3 and RonL. By contrast, the Sid81 isolate induced symptoms in low but significant proportions of plants of two candidates, and the GH95 isolate in high proportions for four candidates and low but significant proportions for two others. In the more stringent 20°C regime, the uniform or near-uniform induction of symptoms in response to inoculation with GH95 failed to differentiate among the 20 candidate TSR sources and two resistant checks, while PV57 and Sid81 identified several candidates that performed similarly to KS96HW10-3 and significantly better than RonL. By identifying new sources of resistance, this study contributes to the control of WSMV.

3.
Plant Dis ; 97(7): 903-911, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30722576

RESUMO

Triticum mosaic virus (TriMV) is a recently discovered virus infecting wheat. We compared Colorado isolates C10-492 and C11-775 with the 06-123 isolate. Comparisons were made using enzyme-linked immunosorbent assay (ELISA), infectivity assay, host range, dry weight (DW), inoculation of 'Mace' wheat with temperature-sensitive resistance to Wheat streak mosaic virus, and the deduced amino acid sequence of the coat proteins (CP) and P1 proteins. Both C10-492 and C11-775 infected 'Gallatin' barley and, when compared with 06-123, had significantly reduced ELISA values and virus titers in wheat. Both Colorado isolates caused symptomless infections in Mace, whereas 06-123 caused mosaic symptoms. The amino acid sequences of the CP differed by two and one amino acids for C10-492 and C11-775, respectively, compared with 06-123. The sequence of C10-492 differed from C11-775 by one amino acid. The P1 amino acid sequence of C10-492 and C11-775 differed from 06-123 by three and one amino acids, respectively. The C10-492 and C11-775 isolates reduced DW significantly in 'Karl 92' but significantly less than 06-123. In '2317' wheat, the Colorado isolates did not consistently cause significant reduction in DW, while 06-123 did. The data collectively indicate that C10-492 and C11-775 are isolates of TriMV showing biological behavior diverse from that of 06-123.

4.
J Sci Food Agric ; 92(4): 772-5, 2012 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-21969097

RESUMO

BACKGROUND: Triticum mosaic virus (TriMV) is a newly discovered wheat virus. Information regarding the effect of wheat viruses on milling and baking quality is limited. The objective of this study was to determine the impact of TriMV infection on the kernel characteristics, milling yield and bread baking quality of wheat. Commercial hard winter varieties evaluated included RonL, Danby and Jagalene. The TriMV resistance of RonL is low, while that of Danby and Jagalene is unknown. KS96HW10-3, a germplasm with high TriMV resistance, was included as a control. Plots of each variety were inoculated with TriMV at the two- to three-leaf stage. Trials were conducted at two locations in two crop years. RESULTS: TriMV infection had no effect on the kernel characteristics, flour yield or baking properties of KS96HW10-3. The effect of TriMV on the kernel characteristics of RonL, Danby and Jagalene was not consistent between crop years and presumably an environmental effect. The flour milling and bread baking properties of these three varieties were not significantly affected by TriMV infection. CONCLUSION: TriMV infection of wheat plants did not affect harvested wheat kernel characteristics, flour milling properties or white pan bread baking quality.


Assuntos
Pão/análise , Farinha/análise , Vírus do Mosaico/isolamento & purificação , Doenças das Plantas/virologia , Triticum/química , Triticum/virologia , Fenômenos Químicos , Proteínas Alimentares/análise , Resistência à Doença , Farinha/virologia , Manipulação de Alimentos , Humanos , Kansas , Proteínas de Plantas/análise , Controle de Qualidade , Sementes/química , Sementes/crescimento & desenvolvimento , Sementes/virologia , Especificidade da Espécie , Triticum/crescimento & desenvolvimento , Água/análise
5.
Plant Dis ; 96(12): 1775-1779, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30727292

RESUMO

Sorghum is a host to numerous Potyvirus spp. and its germplasm encompasses a wide range of infection responses to these viruses. We determined how 183 mini-core-collection sorghum germplasm accessions responded to mechanical inoculation with Maize dwarf mosaic virus (MDMV) in growth regimes in which they were maintained at 30°C followed by 16°C for 5 days. Accessions that appeared immune to MDMV in this initial screening were evaluated for their response in a similar temperature maintenance regime to mechanical inoculation with MDMV, Sugarcane mosaic virus strain MDB (SCMV-MDB), Sorghum mosaic virus (SrMV), Zea mosaic virus (ZeMV), and Kansas, Nigerian, and Australian isolates of Johnsongrass mosaic virus (JGMV-KS, -N, and -Aus, respectively). In both experiments, MDMV systemically infected all accessions except international sorghum accession number (IS) 7679 and IS 20740. These accessions also proved resistant to MDMV, SCMV-MDB, SrMV, and JGMV-N but both were susceptible to the JGMV-KS and JGMV-Aus isolates. IS 7679 but not IS 20740 was resistant to infection with ZeMV. These observations suggest that IS 7679 and IS 20740 might serve as new sources of resistance to several Potyvirus spp. that systemically infect sorghum.

6.
Plant Dis ; 95(12): 1516-1519, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30732011

RESUMO

In 2006, a previously unknown wheat (Triticum aestivum) virus was discovered in Western Kansas and given the name Triticum mosaic virus (TriMV). TriMV has since been found in wheat samples isolated all across the Great Plains. Even though it can infect singularly, TriMV is mostly found with Wheat streak mosaic virus (WSMV) as a co-infection. The potential for TriMV to cause economic loss is significant, but very little is known about the virus. The objective of this study was to survey the TriMV population for genetic variation by nucleotide sequencing of isolates across a geographical region. A secondary objective was to characterize the WSMV isolates that are being co-transmitted with TriMV. Fourteen different TriMV isolations were taken from locations in Texas, Oklahoma, and Kansas, and the coat protein cDNA was sequenced. Thirteen nucleotide differences were found in the TriMV isolates, of which three induce amino acid changes. WSMV isolates had 65 nucleotide changes when compared to WSMV Sydney81. Our results indicate the TriMV virus population has minimal amounts of sequence variation and no singular WSMV genotype is specifically associated with TriMV co-infection. Based on the isolates analyzed, it appears that the field population of TriMV is very homogeneous.

7.
Plant Dis ; 95(2): 183-188, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30743423

RESUMO

Triticum mosaic virus (TriMV) infects wheat (Triticum aestivum) in the Great Plains region of the United States. This study determined the occurrence of TriMV at three locations over 3 years and yield effects of wheat mechanically infected with TriMV. Wheat infection with TriMV, Wheat streak mosaic virus (WSMV), and the High Plains virus (HPV) was verified using enzyme-linked immunosorbent assay. Both wheat singly infected with TriMV and doubly infected with TriMV and WSMV occurred at three, two, and one locations in 2007, 2008, and 2009, respectively. Wheat singly infected with HPV occurred at one and two locations in 2008 and 2009, respectively. Wheat doubly infected with WSMV and HPV occurred at one location in 2008 and 2009. Infection with TriMV declined at two locations each year and, at the third location, it increased the second year and was not detected the third year. WSMV infection increased, except for a decline the third year at one location. In contrast to 3.0% infection of wheat with TriMV and WSMV at one location, 85% of the wheat 1.6 km from that site was infected with TriMV and WSMV in 2009. Infection of wheat with TriMV caused significant yield and volume weight reductions in Danby, RonL, and Jagalene but not KS96HW10-3 wheat.

8.
Plant Dis ; 94(9): 1125-1131, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30743720

RESUMO

Triticum mosaic virus (TriMV) is a newly discovered virus isolated from wheat (Triticum aestivum). This study was conducted to determine an experimental host range for TriMV and identify species that could serve as differential hosts for isolating TriMV from Wheat streak mosaic virus (WSMV). Plants tested were mechanically inoculated with the 06-123 isolate of TriMV or the Sidney 81 isolate of WSMV. Some plants were analyzed by enzyme-linked immunosorbent assay (ELISA) using antibodies of TriMV and WSMV. Plants infected with TriMV always produced mosaic symptoms and only extracts of symptomatic plants reacted with antibodies of TriMV. Maize is not a host for TriMV but barley, oat, rye, and triticale are hosts of TriMV. Certain barley and triticale accessions are hosts for TriMV but not WSMV. These plants can be used in combination with maize to separate WSMV and TriMV in plants infected by both viruses. We also showed that 8 wild grass species were susceptible to TriMV and 25 were not. All of the grasses susceptible to infection with TriMV have been reported as susceptible to infection with WSMV. Because of their growth habits, these plant species would be less desirable for use as differential hosts than maize, barley, and triticale.

9.
Plant Dis ; 93(12): 1265-1274, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30759510

RESUMO

The properties of two virus isolates (U04-82 and U04-83) obtained from two wheat (Triticum aestivum) plants expressing mosaic symptoms were investigated using enzyme-linked immunosorbent assay (ELISA), sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE), time-of-flight mass spectrometry (TOFMS), and infection of wheat with resistance to Wheat streak mosaic virus (WSMV). The coat protein mass was estimated by SDS-PAGE as approximately 32 kDa for U04-82 and 30 kDa for U04-83. The amino acid sequence of the coat protein of U04-82 was 99.6 and 85.5% identical to two isolates, ABC58222 and TX96, respectively, of High Plains virus (HPV) described from Texas. U04-82 was transmitted by wheat curl mites and caused significant yield reductions in wheat resistant to WSMV. U04-83 was actually two distinct virus isolates whose capsid protein amino acid sequences were only 57 and 50% similar to that of TX96. Antiserum prepared to a synthetic peptide from the sequence of the U04-83 isolate recognized the two U04-83 isolates, but not the U04-82 isolate.

10.
Plant Dis ; 93(1): 25-29, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30764256

RESUMO

Triticum mosaic virus (TriMV) is a newly discovered virus found infecting wheat (Triticum aestivum) in Kansas. This study was conducted to determine if the wheat curl mite (WCM, Aceria tosichella) and the bird cherry oat aphid (Rhopalosiphum padi) could transmit TriMV. Using different sources of WCM and two different isolates of TriMV, we were able to show the WCM is the vector of TriMV. Field analysis by enzyme-linked immunosorbent assay (ELISA) demonstrated natural infection patterns of wheat infected with TriMV, Wheat streak mosaic virus (WSMV), or both TriMV and WSMV, putatively infected by viruliferous WCM from a volunteer source growing adjacent to the wheat. Moreover, by single WCM transfers using WCM obtained from different wheat plants naturally infected with TriMV and WSMV and naturally infested with WCM, we showed that these WCM also transmitted TriMV only to wheat or transmitted both TriMV and WSMV to wheat. The infection rates of wheat with TriMV only using WCM transmission was low in both laboratory and field analyses. However, field analyses by ELISA showed that levels of infection of wheat by both TriMV and WSMV were high. No transmission of TriMV to wheat by R. padi occurred in our studies.

11.
Plant Dis ; 92(5): 808-817, 2008 May.
Artigo em Inglês | MEDLINE | ID: mdl-30769583

RESUMO

In 2006, a mechanically-transmissible and previously uncharacterized virus was isolated in Kansas from wheat plants with mosaic symptoms. The physiochemical properties of the virus were examined by purification on cesium chloride density gradients, electron microscopy, sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE), sequencing of the nucleotides and amino acids of the coat protein, and immunological reactivity. Purified preparations contained flexuous, rod-shaped particles that resembled potyviruses. The coat protein was estimated from SDS-PAGE to have a mass of approximately 35 kDa. Its amino acid sequence, as deduced from DNA sequencing of cloned, reverse-transcribed viral RNA and separately determined by time-of-flight mass spectrometry, was most closely related (49% similarity) to Sugarcane streak mosaic virus, a member of the Tritimovirus genus of the family Potyviridae. The virus gave strong positive reactions during enzyme-linked immunosorbent assays using polyclonal antibodies raised against purified preparations of the cognate virus but gave consistent negative reactions against antibodies to Wheat streak mosaic virus (WSMV), other wheat potyviruses, and the High Plains virus. When the virus was inoculated on the WSMV-resistant wheat cv. RonL, systemic symptoms appeared and plant growth was diminished significantly in contrast with WSMV-inoculated RonL. Taken together, the data support consideration of this virus as a new potyvirus, and the name Triticum mosaic virus (TriMV) is proposed.

12.
J Virol Methods ; 135(2): 214-22, 2006 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-16672165

RESUMO

The wheat curl mite (Aceria tosichella Keifer) often simultaneously transmits the High Plains virus and Wheat streak mosaic virus under field conditions, resulting in doubly infected plants. In this study, a pure culture of the High Plains virus (isolate HPV95ID), which was infected with both High Plains virus and Wheat streak mosaic virus, was mechanically transmitted from barley (Hordeum vulgáre L.) to maize (Zea mays L.) by vascular puncture inoculation. Different water temperatures and durations for soaking kernels at pre-inoculation and different incubation temperatures and durations at post-inoculation on transmission of High Plains virus were studied. Transmissions of the High Plains virus were significantly different for post-inoculation incubations at 11, 21, or 30 degrees C after a 2 h pre-inoculation soaking at 30 degrees C and post-inoculation incubations of kernels for 1 day versus 2 days. Use of Cs2SO4 in a partial purification protocol resulted in infectious final fractions. Bioassays, serological assays, analyses by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and examinations by electron microscopy confirmed isolation of a pure culture of High Plains virus from infectious final partially purified fractions. We demonstrate infectivity of the final fractions and associate it with the High Plains disease symptoms, the 32 kDa protein and double membrane bodies and discuss this evidence to support the viral nature of High Plains virus.


Assuntos
Hordeum/virologia , Doenças das Plantas/virologia , Vírus de Plantas/isolamento & purificação , Zea mays/virologia , Ensaio de Imunoadsorção Enzimática , Temperatura
13.
Plant Dis ; 89(8): 888-895, 2005 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30786523

RESUMO

Wheat with yellow head disease (YHD) (yellow heads and mosaic leaf symptoms) has been observed in Kansas since 1997. A pathogen was transmitted from the infected wheat to maize by vascular puncture inoculation and to Nicotiana benthamiana by rub inoculation. The original infected wheat and infected maize and N. benthamiana test plants all produced a unique 32- to 34-kDa protein when analyzed by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE). Time-of-flight mass spectrometry analysis of the unique 32- to 34-kDa protein showed that the amino acid sequence was most closely related to the nucleoprotein of Rice hoja blanca virus, indicating that the virus causing YHD symptoms in wheat is a tenuivirus. Antiserum made to this protein failed to react with extracts made from healthy wheat or wheat infected with Wheat streak mosaic virus or the High Plains virus. The antiserum did react to extracts made from symptomatic wheat, maize, and N. benthamiana, shown by SDS-PAGE to contain the unique protein, and to extracts of wheat with YHD symptoms from Kansas, North Dakota, South Dakota, and Oklahoma. The name Wheat yellow head virus is proposed for this virus.

14.
J Biol Chem ; 279(1): 488-94, 2004 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-14561770

RESUMO

The "32-kDa" protein specifically associated with high plains disease was characterized by time-of-flight mass spectrometry, after the agent had been isolated in pure culture by "vascular puncture inoculation," a novel mechanical means of transmission. Two isolates from different geographic locations each consisted of a mixture of subpopulations that were highly homologous to an amino acid sequence derived from a nucleotide sequence (U60141) deposited in GenBank trade mark by the Nebraska group as "the probable N-protein of high plains virus." However, the U60141 sequence was found to be incomplete; de novo sequencing of peptides produced by proteolytic digestions of the 32-kDa band from an SDS-PAGE separation showed that an additional 18 amino acid residues were present at the N terminus. BLAST (basic local alignment search tool) examination of the sequence showed no significant homology with any protein in the databases, indicating that the infectious agent of high plains disease is likely a member of a hitherto unclassified virus group.


Assuntos
Altitude , Doenças das Plantas , Proteínas de Plantas/química , Vírus de Plantas/patogenicidade , Sequência de Aminoácidos , Dados de Sequência Molecular , Fragmentos de Peptídeos , Mapeamento de Peptídeos , Vírus de Plantas/química , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Triticum , Estados Unidos , Zea mays
15.
Plant Dis ; 88(8): 824-829, 2004 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30812509

RESUMO

The High Plains virus (HPV), vectored by the wheat curl mite (WCM) (Aceria tosichella), causes a severe disease of maize (Zea mays) in the U. S. High Plains. In the present study, five HPV isolates from five states were separated from co-infecting Wheat streak mosaic virus and their molecular and biological variability studied. Molecular studies involved time-of-flight mass spectrometry (TOFMS) to determine amino acid sequence variability of the 32-kDa nucleoprotein (32 np) of the isolates. Biological studies involved testing the ability of the five HPV isolates to infect a maize line previously shown to have resistance. Inoculations of the HPV isolates were conducted using vascular puncture inoculation (VPI) and viruliferous WCM. TOFMS analyses demonstrated an 18-amino acid sequence in the isolates at the N-terminus of the 32 np, the presence of amino acid sequence differences among the isolates, and variability among amino acid sequences of the 32 np of some isolates. Three of the five HPV isolates infected the resistant maize inbred, B73, using VPI, and two of the same three HPV isolates infected this line using WCM inoculation, albeit low numbers of plants were infected by each technique.

16.
Virology ; 302(1): 58-70, 2002 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-12429516

RESUMO

Nucleotide (nt) sequence polymorphism within a collection of Wheat streak mosaic virus (WSMV) isolates was examined. An approximately 1267-nt region encompassing the coat protein (CP) cistron and flanking sequences was amplified by reverse transcription-polymerase chain reaction (RT-PCR) for each of 49 isolates not previously sequenced. Consensus sequences were compiled for each isolate based on sequences derived from three clones per RT-PCR product. Among 59 consensus sequences examined, only two were identical. Clades A-C contained divergent isolates from Mexico (Clade A); the Czech Republic, Hungary, and Russia (Clade B); and Iran (Clade C). Fifty-four closely related consensus sequences of isolates from the U.S. (51 sequences), Canada (1 sequence), and Turkey (2 sequences) comprised Clade D. Pair-wise nt divergence between two of the most distantly related sequences (Sidney 81 of Clade D and El Batán 3 of Clade A) was 20%, representing over half of the variable sites (34.1%) in the entire WSMV data set. Maximum pairwise nt divergence within Clade D was 3.6%, yet the proportion of all variable sites within Clade D (21.4%) was similar to that of the Sidney 81-El Batán 3 pair. Patterns of polymorphism within Clade D and the Sidney 81-El Batán 3 pair were remarkably similar with respect to synonymous, nonsynonymous, and noncoding substitutions, as were the proportions of substitutions as a function of nt position within codons. The majority of substitutions within Clade D were synonymous and randomly distributed throughout the coding region examined, whereas nonsynonymous substitutions exhibited a clumped distribution and mostly occurred within the 5'-proximal portion of the CP cistron. Because over half of the polymorphic sites within Clade D were of allele size class 1, the isolates appear to be evolving independently and in a nondeterministic manner, within the constraints of selection. These results indicate that Clade D has undergone substantial and, most likely, recent divergence with the majority of consensus sequence substitutions potentially neutral with respect to fitness. An estimate of evolution rate suggests that the present diversity within the U.S. population arose in about a century, a timeframe corresponding to the establishment of wheat monoculture in the Great Plains.


Assuntos
Vírus do Mosaico/genética , Polimorfismo Genético , Triticum/virologia , Sequência de Bases , Variação Genética , Genótipo , Dados de Sequência Molecular , Vírus do Mosaico/classificação , Vírus do Mosaico/isolamento & purificação , Filogenia
17.
J Gen Virol ; 83(Pt 4): 895-906, 2002 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-11907340

RESUMO

North American and Eurasian isolates of Wheat streak mosaic virus (WSMV; genus Tritimovirus) and Oat necrotic mottle virus (ONMV; genus Rymovirus) were examined. Nine WSMV isolates differentially infected oat, barley, inbred maize line SDp2 and sorghum line KS56. The WSMV isolates clustered into groups based on phylogenetic analyses of the capsid protein (CP) cistron and flanking regions. WSMV isolates from the United States (US) and Turkey were closely related, suggesting recent movement between continents. Although more divergent, WSMV from Iran (WSMV-I) also shared a most recent common ancestor with the US and Turkish isolates. Another group of WSMV isolates from central Europe and Russia may represent a distinct Eurasian population. Complete genome sequences of WSMV from the Czech Republic (WSMV-CZ) and Turkey (WSMV-TK1) were determined and comparisons based on complete sequences yielded relationships similar to those based on partial sequences. ONMV-Pp recovered from blue grass (Poa pratensis L.) in Germany displayed the same narrow host range as ONMV-Type from Canada. Western blots revealed a heterologous relationship among CP of WSMV and ONMV. Phylogenetic analyses of the capsid protein cistron and flanking genomic regions indicated that WSMV and ONMV are related species sharing 74.2-76.2% (nucleotide) and 79.2-81.0% (amino acid) identity. Thus, ONMV should be removed from the genus Rymovirus and designated a definitive member of the genus Tritimovirus. Phylogenetic analyses further suggest that Sugarcane streak mosaic virus is not a tritimovirus, and may represent a new genus within the family Potyviridae.


Assuntos
Potyviridae/classificação , Animais , Avena/virologia , Capsídeo/imunologia , Filogenia , Potyviridae/genética , Potyviridae/imunologia , Coelhos , Triticum/virologia
18.
Plant Dis ; 86(2): 138-142, 2002 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30823310

RESUMO

High Plains virus (HPV) isolates from Colorado, Idaho, Kansas, Texas, and Utah were serologically related, had similar relative molecular masses (sodium dodecyl sulfate-polyacrylamide gel electrophoresis) for the 32-kDa diagnostic HPV protein, and were transmissible and maintained free of Wheat streak mosaic virus (WSMV) by vascular puncture inoculation. Collections of wheat curl mites (Aceria tosichella Keifer; WCM) from Kansas, Montana, Nebraska, South Dakota, and Texas differentially transmitted these isolates. For collections from South Dakota and Texas, little or no HPV transmission occurred, whereas WCM from Nebraska and Montana transmitted all five isolates. The collection from Kansas mostly transmitted only one HPV isolate. Aviruliferous or viruliferous WSMV Nebraska WCM transmitted HPV at similar rates and aviruliferous Montana WCM transmitted HPV at lower levels than viruliferous Montana WCM.

20.
Plant Dis ; 83(10): 905-912, 1999 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30841071

RESUMO

Sorghum (Sorghum bicolor) was infected by a mechanically transmissible, flexuous, rod-shaped virus. Antiserum made against the purified virus reacted specifically in enzyme-linked immunosorbent assay to the virus and to the potexvirus foxtail mosaic virus (FoMV), indicating that the sorghum virus was an isolate of FoMV. Comparison of the sorghum isolate (H93) to FoMV PV 139 showed that H93 differed biologically by causing severe symptoms in sorghum, not readily infecting certain barley lines, and causing only faint symptoms in barley. At the molecular level, the capsid of H93 had a mass of 23.9 kDa and 217 amino acid residues compared with 23.7 kDa and 215 residues previously reported for the nucleic acid sequence of FoMV. The amino acid sequences of the two viruses were greater than 96% identical. They varied by having four substitutions, one deletion, and three insertions between residues 66 and 67. This is the first report of natural infection of sorghum by FoMV, thus extending its host range among cereal crops.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...