Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
J Psychiatry Neurosci ; 48(5): E369-E375, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37751919

RESUMO

BACKGROUND: Among its pleiotropic properties, gender-affirming hormone therapy (GHT) affects regional brain volumes. The hypothalamus, which regulates neuroendocrine function and associated emotional and cognitive processes, is an intuitive target for probing GHT effects. We sought to assess changes to hypothalamus and hypothalamic subunit volumes after GHT, thereby honouring the region's anatomical and functional heterogeneity. METHODS: Individuals with gender dysphoria and cisgender controls underwent 2 MRI measurements, with a median interval of 145 days (interquartile range [IQR] 128.25-169.75 d, mean 164.94 d) between the first and second MRI. Transgender women (TW) and transgender men (TM) underwent the first MRI before GHT and the second MRI after approximately 4.5 months of GHT, which comprised estrogen and anti-androgen therapy in TW or testosterone therapy in TM. Hypothalamic volumes were segmented using FreeSurfer, and effects of GHT were tested using repeated-measures analysis of covariance. RESULTS: The final sample included 106 participants: 38 TM, 15 TW, 32 cisgender women (CW) and 21 cisgender men (CM). Our analyses revealed group × time interaction effects for total, left and right hypothalamus volume, and for several subunits (left and right inferior tubular, left superior tubular, right anterior inferior, right anterior superior, all p corr < 0.01). In TW, volumes decreased between the first and second MRI in these regions (all p corr ≤ 0.01), and the change from the first to second MRI in TW differed significantly from that in CM and CW in several subunits (p corr < 0.05). LIMITATIONS: We did not address the influence of transition-related psychological and behavioural changes. CONCLUSION: Our results suggest a subunit-specific effect of GHT on hypothalamus volumes in TW. This finding is in accordance with previous reports of positive and negative effects of androgens and estrogens, respectively, on cerebral volumes.


Assuntos
Emoções , Disforia de Gênero , Masculino , Feminino , Humanos , Disforia de Gênero/diagnóstico por imagem , Disforia de Gênero/tratamento farmacológico , Hipotálamo/diagnóstico por imagem , Testosterona
2.
Stress ; 26(1): 2247102, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37771232

RESUMO

Background: Despite the rapid increase in reports of exhaustion syndrome (ES) due to daily occupational stress, the mechanisms underlying ES are unknown. In the present study, we investigated whether occupational ES is associated with specific modifications of the subfields of the amygdala and hippocampus resembling those described in other chronic stress conditions. Special focus was paid to possible sex differences.Methods: As a follow up to our previous studies of occupational ES, we carried out MRI-based subfield segmentation of the hippocampus and amygdala volumes in 58 patients with occupational ES (22 males) and 65 age-matched controls (27 males) (age range 30-46 years).Results: There was a significant and bilateral enlargement of the lateral, basal and central nucleus of the amygdala in patients with ES (corrected for the total intracranial volume (ICV)). These differences were detected only in females. Higher values in the right central and right basal amygdala remained when the whole amygdala volume was used as reference, instead of the ICV. Notably, in female patients the volumes of these specific nuclei were positively correlated with the degree of perceived stress. No changes in the hippocampus subfields were detected in female or male patients.Conclusions: The findings underline that ES is a chronic stress condition, suggesting that not only extreme forms of stress, but also the everyday stress is associated with localized differences from controls in the amygdala. The absence of significant alterations among men with ES despite a similar degree of perceived stress supports the notion that women seem more susceptible to stress-related cerebral changes, and may explain the higher prevalence of ES among women.


Assuntos
Estresse Ocupacional , Estresse Psicológico , Humanos , Masculino , Feminino , Adulto , Pessoa de Meia-Idade , Estresse Psicológico/diagnóstico por imagem , Hipocampo/diagnóstico por imagem , Imageamento por Ressonância Magnética , Tonsila do Cerebelo/diagnóstico por imagem , Estresse Ocupacional/diagnóstico por imagem
3.
Transl Psychiatry ; 13(1): 283, 2023 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-37582758

RESUMO

Anorexia nervosa (AN) is characterized by low body weight, fear of gaining weight, and distorted body image. Anxiety may play a role in the formation and course of the illness, especially related to situations involving food, eating, weight, and body image. To understand distributed patterns and consistency of neural responses related to anxiety, we enrolled 25 female adolescents with AN and 22 non-clinical female adolescents with mild anxiety who underwent two fMRI sessions in which they saw personalized anxiety-provoking word stimuli and neutral words. Consistency in brain response patterns across trials was determined using a multivariate representational similarity analysis (RSA) approach within anxiety circuits and in a whole-brain voxel-wise searchlight analysis. In the AN group there was higher representational similarity for anxiety-provoking compared with neutral stimuli predominantly in prefrontal regions including the frontal pole, medial prefrontal cortex, dorsolateral prefrontal cortex, and medial orbitofrontal cortex, although no significant group differences. Severity of anxiety correlated with consistency of brain responses within anxiety circuits and in cortical and subcortical regions including the frontal pole, middle frontal gyrus, orbitofrontal cortex, thalamus, lateral occipital cortex, middle temporal gyrus, and cerebellum. Higher consistency of activation in those with more severe anxiety symptoms suggests the possibility of a greater degree of conditioned brain responses evoked by personally-relevant emotional stimuli. Anxiety elicited by disorder-related stimuli may activate stereotyped, previously-learned neural responses within- and outside of classical anxiety circuits. Results have implications for understanding consistent and automatic responding to environmental stimuli that may play a role in maintenance of AN.


Assuntos
Anorexia Nervosa , Feminino , Adolescente , Humanos , Anorexia Nervosa/diagnóstico por imagem , Anorexia Nervosa/psicologia , Ansiedade/diagnóstico por imagem , Encéfalo/diagnóstico por imagem , Transtornos de Ansiedade , Emoções/fisiologia , Imageamento por Ressonância Magnética , Mapeamento Encefálico
4.
Ther Adv Psychopharmacol ; 12: 20451253221132085, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36420117

RESUMO

Background: Serotonergic agents affect brain plasticity and reverse stress-induced dendritic atrophy in key fronto-limbic brain areas associated with learning and memory. Objectives: The aim of this study was to investigate effects of the antidepressant escitalopram on gray matter during relearning in healthy individuals to inform a model for depression and the neurobiological processes of recovery. Design: Randomized double blind placebo control, monocenter study. Methods: In all, 76 (44 females) healthy individuals performed daily an associative learning task with emotional or non-emotional content over a 3-week period. This was followed by a 3-week relearning period (randomly shuffled association within the content group) with concurrent daily selective serotonin reuptake inhibitor (i.e., 10 mg escitalopram) or placebo intake. Results: Via voxel-based morphometry and only in individuals that developed sufficient escitalopram blood levels over the 21-day relearing period, an increased density of the left dorsolateral prefrontal cortex was found. When investigating whether there was an interaction between relearning and drug intervention for all participants, regardless of escitalopram levels, no changes in gray matter were detected with either surfaced-based or voxel-based morphometry analyses. Conclusion: The left dorsolateral prefrontal cortex affects executive function and emotional processing, and is a critical mediator of symptoms and treatment outcomes of depression. In line, the findings suggest that escitalopram facilitates neuroplastic processes in this region if blood levels are sufficient. Contrary to our hypothesis, an effect of escitalopram on brain structure that is dependent of relearning content was not detected. However, this may have been a consequence of the intensity and duration of the interventions. Registration: ClinicalTrials.gov Identifier: NCT02753738; Trial Name: Enhancement of learning associated neural plasticity by Selective Serotonin Reuptake Inhibitors; URL: https://clinicaltrials.gov/ct2/show/NCT02753738.

5.
Neurooncol Adv ; 4(1): vdac050, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35571986

RESUMO

Background: Childhood cerebellar pilocytic astrocytomas harbor excellent overall survival rates after surgical resection, but the patients may exhibit specific cognitive and behavioral problems. Functional MRI has catalyzed insights into brain functional systems and has already been linked with the neuropsychological performance. We aimed to exploit the question of whether resting-state functional MRI can be used as a biomarker for the cognitive outcome assessment of these patients. Methods: We investigated 13 patients (median age 22.0 years; range 14.9-31.3) after a median interval between surgery and examination of 15.0 years (range 4.2-20.5) and 16 matched controls. All subjects underwent functional 3-Tesla MRI scans in a resting-state condition and battery neuropsychological tests. Results: Patients showed a significantly increased functional connectivity in the precuneus compared with controls (P < .05) and at the same time impairments in various domains of neuropsychological functioning such as a lower mean Wechsler Intelligenztest für Erwachsene (WIE) IQ percentile (mean [M] = 48.62, SD = 29.14), lower scores in the Trail Making Test (TMT) letter sequencing (M = 49.54, SD = 30.66), worse performance on the WIE subtest Digit Symbol Coding (M = 38.92, SD = 35.29), subtest Symbol Search (M = 40.75, SD = 35.28), and test battery for attentional performance (TAP) divided attention task (M = 783.92, SD = 73.20). Conclusion: Childhood cerebellar tumor treated by resection only strongly impacts the development of precuneus/posterior cingulate cortex functional connectivity. Functional MRI has the potential to help deciphering the pathophysiology of cerebellar-related cognitive impairments in these patients and could be an additional tool in their individual assessment and follow-up.

6.
Neuroimage ; 249: 118887, 2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-34999203

RESUMO

An essential core function of one's cognitive flexibility is the use of acquired knowledge and skills to adapt to ongoing environmental changes. Animal models have highlighted the influence serotonin has on neuroplasticity. These effects have been predominantly demonstrated during emotional relearning which is theorized as a possible model for depression. However, translation of these mechanisms is in its infancy. To this end, we assessed changes in effective connectivity at rest and during associative learning as a proxy of neuroplastic changes in healthy volunteers. 76 participants underwent 6 weeks of emotional or non-emotional (re)learning (face-matching or Chinese character-German noun matching). During relearning participants either self-administered 10 mg/day of the selective serotonin reuptake inhibitor (SSRI) escitalopram or placebo in a double-blind design. Associative learning tasks, resting-state and structural images were recorded before and after both learning phases (day 1, 21 and 42). Escitalopram intake modulated relearning changes in a network encompassing the right insula, anterior cingulate cortex and right angular gyrus. Here, the process of relearning during SSRI intake showed a greater decrease in effective connectivity from the right insula to both the anterior cingulate cortex and right angular gyrus, with increases in the opposite direction when compared to placebo. In contrast, intrinsic connections and those at resting-state were only marginally affected by escitalopram. Further investigation of gray matter volume changes in these functionally active regions revealed no significant SSRI-induced structural changes. These findings indicate that the right insula plays a central role in the process of relearning and SSRIs further potentiate this effect. In sum, we demonstrated that SSRIs amplify learning-induced effective connections rather than affecting the intrinsic task connectivity or that of resting-state.


Assuntos
Aprendizagem por Associação , Conectoma , Córtex Insular , Rede Nervosa , Plasticidade Neuronal , Inibidores Seletivos de Recaptação de Serotonina/farmacologia , Adulto , Aprendizagem por Associação/efeitos dos fármacos , Aprendizagem por Associação/fisiologia , Citalopram/farmacologia , Feminino , Giro do Cíngulo/diagnóstico por imagem , Giro do Cíngulo/efeitos dos fármacos , Giro do Cíngulo/fisiologia , Humanos , Córtex Insular/diagnóstico por imagem , Córtex Insular/efeitos dos fármacos , Córtex Insular/fisiologia , Imageamento por Ressonância Magnética , Masculino , Rede Nervosa/diagnóstico por imagem , Rede Nervosa/efeitos dos fármacos , Rede Nervosa/fisiologia , Plasticidade Neuronal/efeitos dos fármacos , Plasticidade Neuronal/fisiologia , Lobo Parietal/diagnóstico por imagem , Lobo Parietal/efeitos dos fármacos , Lobo Parietal/fisiologia , Descanso , Inibidores Seletivos de Recaptação de Serotonina/administração & dosagem , Adulto Jovem
7.
Neuroimage ; 247: 118829, 2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-34923134

RESUMO

Learning-induced neuroplastic changes, further modulated by content and setting, are mirrored in brain functional connectivity (FC). In animal models, selective serotonin reuptake inhibitors (SSRIs) have been shown to facilitate neuroplasticity. This is especially prominent during emotional relearning, such as fear extinction, which may translate to clinical improvements in patients. To investigate a comparable modulation of neuroplasticity in humans, 99 healthy subjects underwent three weeks of emotional (matching faces) or non-emotional learning (matching Chinese characters to unrelated German nouns). Shuffled pairings of the original content were subsequently relearned for the same time. During relearning, subjects received either a daily dose of the SSRI escitalopram or placebo. Resting-state functional magnetic resonance imaging was performed before and after the (re-)learning phases. FC changes in a network comprising Broca's area, the medial prefrontal cortex, the right inferior temporal and left lingual gyrus were modulated by escitalopram intake. More specifically, it increased the bidirectional connectivity between medial prefrontal cortex and lingual gyrus for non-emotional and the connectivity from medial prefrontal cortex to Broca's area for emotional relearning. The context dependence of these effects together with behavioral correlations supports the assumption that SSRIs in clinical practice improve neuroplasticity rather than psychiatric symptoms per se. Beyond expanding the complexities of learning, these findings emphasize the influence of external factors on human neuroplasticity.


Assuntos
Escitalopram/farmacologia , Aprendizagem/efeitos dos fármacos , Imageamento por Ressonância Magnética/métodos , Plasticidade Neuronal/efeitos dos fármacos , Inibidores Seletivos de Recaptação de Serotonina/farmacologia , Adulto , Áustria , Método Duplo-Cego , Emoções/efeitos dos fármacos , Feminino , Voluntários Saudáveis , Humanos , Processamento de Imagem Assistida por Computador , Estudos Longitudinais , Masculino , Rememoração Mental/efeitos dos fármacos , Modelos Estatísticos
8.
Front Neurosci ; 15: 666000, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34602964

RESUMO

The accurate segmentation of in vivo magnetic resonance imaging (MRI) data is a crucial prerequisite for the reliable assessment of disease progression, patient stratification or the establishment of putative imaging biomarkers. This is especially important for the hippocampal formation, a brain area involved in memory formation and often affected by neurodegenerative or psychiatric diseases. FreeSurfer, a widely used automated segmentation software, offers hippocampal subfield delineation with multiple input options. While a single T1-weighted (T1) sequence is regularly used by most studies, it is also possible and advised to use a high-resolution T2-weighted (T2H) sequence or multispectral information. In this investigation it was determined whether there are differences in volume estimations depending on the input images and which combination of these deliver the most reliable results in each hippocampal subfield. 41 healthy participants (age = 25.2 years ± 4.2 SD) underwent two structural MRIs at three Tesla (time between scans: 23 days ± 11 SD) using three different structural MRI sequences, to test five different input configurations (T1, T2, T2H, T1 and T2, and T1 and T2H). We compared the different processing pipelines in a cross-sectional manner and assessed reliability using test-retest variability (%TRV) and the dice coefficient. Our analyses showed pronounced significant differences and large effect sizes between the processing pipelines in several subfields, such as the molecular layer (head), CA1 (head), hippocampal fissure, CA3 (head and body), fimbria and CA4 (head). The longitudinal analysis revealed that T1 and multispectral analysis (T1 and T2H) showed overall higher reliability across all subfields than T2H alone. However, the specific subfields had a substantial influence on the performance of segmentation results, regardless of the processing pipeline. Although T1 showed good test-retest metrics, results must be interpreted with caution, as a standard T1 sequence relies heavily on prior information of the atlas and does not take the actual fine structures of the hippocampus into account. For the most accurate segmentation, we advise the use of multispectral information by using a combination of T1 and high-resolution T2-weighted sequences or a T2 high-resolution sequence alone.

9.
Epilepsy Res ; 175: 106692, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34175792

RESUMO

INTRODUCTION: Hippocampal sclerosis is the most frequent pathological substrate in drug resistant temporal lobe epilepsy (TLE). Recently 4 types of hippocampal sclerosis (HS) have been defined in a task force by the International League Against Epilepsy (ILAE), based on patterns of cell loss in specific hippocampal subfields. Type 1 HS is most frequent and has the most favorable outcome after epilepsy surgery. We hypothesized that volume loss in specific hippocampal subfields determined by automated volumetry of high resolution MRI would correspond to cell loss in histological reports. MATERIAL AND METHODS: In a group of well characterized patients with drug resistant TLE (N = 26 patients, 14 with right-sided focus, 12 with left-sided focus) volumes of the right and left hippocampus and the hippocampal subfields CA1, CA2 + 3, CA4 and dentate gyrus (DG) were estimated automatically using FreeSurfer version 6.0 from high-resolution cerebral MRI and compared to a large group of healthy controls (N = 121). HS subtype classification was attempted based on histological reports. RESULTS: Volumes of the whole hippocampus and all investigated hippocampal subfields (CA1, CA2 + 3, CA4 and DG) were significantly lower on the ipsilateral compared the contralateral side (p < 0.001) and compared to the healthy controls (p < 0.001). Conversely, whole hippocampal and hippocampal subfield volumes were not significantly different from healthy control values on the contralateral side. In 12 of 20 patients the pattern of hippocampal volume loss in specific subfields was in accordance with HS types from histology. The highest overlap between automated MRI and histology was achieved for type 1 HS (in 10 of 12 cases). CONCLUSION: The automated volumetry of hippocampal subfields, based on high resolution MRI, may have the potential to predict the pattern of cell loss in hippocampal sclerosis before operation.


Assuntos
Epilepsia do Lobo Temporal , Atrofia/patologia , Epilepsia do Lobo Temporal/diagnóstico por imagem , Epilepsia do Lobo Temporal/patologia , Epilepsia do Lobo Temporal/cirurgia , Hipocampo/patologia , Humanos , Imageamento por Ressonância Magnética , Esclerose/patologia
10.
J Sex Med ; 18(6): 1122-1129, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34030966

RESUMO

BACKGROUND: In contrast to cisgender persons, transgender persons identify with a different gender than the one assigned at birth. Although research on the underlying neurobiology of transgender persons has been accumulating over the years, neuroimaging studies in this relatively rare population are often based on very small samples resulting in discrepant findings. AIM: To examine the neurobiology of transgender persons in a large sample. METHODS: Using a mega-analytic approach, structural MRI data of 803 non-hormonally treated transgender men (TM, n = 214, female assigned at birth with male gender identity), transgender women (TW, n = 172, male assigned at birth with female gender identity), cisgender men (CM, n = 221, male assigned at birth with male gender identity) and cisgender women (CW, n = 196, female assigned at birth with female gender identity) were analyzed. OUTCOMES: Structural brain measures, including grey matter volume, cortical surface area, and cortical thickness. RESULTS: Transgender persons differed significantly from cisgender persons with respect to (sub)cortical brain volumes and surface area, but not cortical thickness. Contrasting the 4 groups (TM, TW, CM, and CW), we observed a variety of patterns that not only depended on the direction of gender identity (towards male or towards female) but also on the brain measure as well as the brain region examined. CLINICAL TRANSLATION: The outcomes of this large-scale study may provide a normative framework that may become useful in clinical studies. STRENGTHS AND LIMITATIONS: While this is the largest study of MRI data in transgender persons to date, the analyses conducted were governed (and restricted) by the type of data collected across all participating sites. CONCLUSION: Rather than being merely shifted towards either end of the male-female spectrum, transgender persons seem to present with their own unique brain phenotype. Mueller SC, Guillamon A, Zubiaurre-Elorza L, et al. The Neuroanatomy of Transgender Identity: Mega-Analytic Findings From the ENIGMA Transgender Persons Working Group. J Sex Med 2021;18:1122-1129.


Assuntos
Pessoas Transgênero , Transexualidade , Encéfalo/diagnóstico por imagem , Feminino , Identidade de Gênero , Humanos , Recém-Nascido , Masculino , Neuroanatomia , Transexualidade/diagnóstico por imagem
11.
Transl Psychiatry ; 11(1): 200, 2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33795646

RESUMO

Antidepressant doses of ketamine rapidly facilitate synaptic plasticity and modify neuronal function within prefrontal and hippocampal circuits. However, most studies have demonstrated these effects in animal models and translational studies in humans are scarce. A recent animal study showed that ketamine restored dendritic spines in the hippocampal CA1 region within 1 h of administration. To translate these results to humans, this randomized, double-blind, placebo-controlled, crossover magnetic resonance imaging (MRI) study assessed ketamine's rapid neuroplastic effects on hippocampal subfield measurements in healthy volunteers. S-Ketamine vs. placebo data were analyzed, and data were also grouped by brain-derived neurotrophic factor (BDNF) genotype. Linear mixed models showed that overall hippocampal subfield volumes were significantly larger (p = 0.009) post ketamine than post placebo (LS means difference=0.008, standard error=0.003). Post-hoc tests did not attribute effects to specific subfields (all p > 0.05). Trend-wise volumetric increases were observed within the left hippocampal CA1 region (p = 0.076), and trend-wise volumetric reductions were obtained in the right hippocampal-amygdaloid transition region (HATA) (p = 0.067). Neither genotype nor a genotype-drug interaction significantly affected the results (all p > 0.7). The study provides evidence that ketamine has short-term effects on hippocampal subfield volumes in humans. The results translate previous findings from animal models of depression showing that ketamine has pro-neuroplastic effects on hippocampal structures and underscore the importance of the hippocampus as a key region in ketamine's mechanism of action.


Assuntos
Ketamina , Antidepressivos , Estudos Cross-Over , Método Duplo-Cego , Voluntários Saudáveis , Hipocampo , Humanos , Ketamina/farmacologia , Imageamento por Ressonância Magnética
12.
Cereb Cortex ; 30(6): 3771-3780, 2020 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-31989157

RESUMO

The serotonin-1A receptor (5-HT1AR) represents a viable target in the treatment of disorders of the brain. However, development of psychiatric drugs continues to be hindered by the relative inaccessibility of brain tissue. Although the efficacy of drugs selective for the 5-HT1AR has not been proven, research continues to focus on drugs that influence this receptor subtype. To further knowledge on this topic, we investigated the topological coexpression patterns of the 5-HT1AR. We calculated Spearman's rho for the correlation of positron emission tomography-binding potentials (BPND) of the 5-HT1AR assessed in 30 healthy subjects using the tracer [carbonyl-11C]WAY-100635 and predicted whole-brain mRNA expression of 18 686 genes. After applying a threshold of r > 0.3 in a leave-one-out cross-validation of the prediction of mRNA expression, genes with ρ ≥ 0.7 were considered to be relevant. In cortical regions, 199 genes showed high correlation with the BPND of the 5-HT1AR, in subcortical regions 194 genes. Using our approach, we could consolidate the role of BDNF and implicate new genes (AnxA8, NeuroD2) in serotonergic functioning. Despite its explorative nature, the analysis can be seen as a gene prioritization approach to reduce the number of genes potentially connected to 5-HT1AR functioning and guide future in vitro studies.


Assuntos
Encéfalo/metabolismo , RNA Mensageiro/metabolismo , Receptor 5-HT1A de Serotonina/metabolismo , Adulto , Anexinas/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fator Neurotrófico Derivado do Encéfalo/genética , Feminino , Voluntários Saudáveis , Humanos , Masculino , Neuropeptídeos/genética , Piperazinas , Tomografia por Emissão de Pósitrons , Piridinas , Receptor 5-HT1A de Serotonina/genética , Antagonistas da Serotonina , Transcriptoma , Adulto Jovem
13.
Neuroimage ; 204: 116244, 2020 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-31606475

RESUMO

Neural plasticity is a complex process dependent on neurochemical underpinnings. Next to the glutamatergic system which contributes to memory formation via long-term potentiation (LTP) and long-term depression (LTD), the main inhibitory neurotransmitter, GABA is crucially involved in neuroplastic processes. Hence, we investigated changes in glutamate and GABA levels in the brain in healthy participants performing an associative learning paradigm. Twenty healthy participants (10 female, 25 ±â€¯5 years) underwent paired multi-voxel magnetic resonance spectroscopy imaging before and after completing 21 days of a facial associative learning paradigm in a longitudinal study design. Changes of GABA and glutamate were compared to retrieval success in the hippocampus, insula and thalamus. No changes in GABA and glutamate concentration were found after 21 days of associative learning. However, baseline hippocampal GABA levels were significantly correlated with initial retrieval success (pcor = 0.013, r = 0.690). In contrast to the thalamus and insula (pcor>0.1), higher baseline GABA levels in the hippocampus were associated with better retrieval performance in an associative learning paradigm. Therefore, our findings support the importance of hippocampal GABA levels in memory formation in the human brain in vivo.


Assuntos
Aprendizagem por Associação/fisiologia , Hipocampo/metabolismo , Rememoração Mental/fisiologia , Ácido gama-Aminobutírico/metabolismo , Adulto , Córtex Cerebral/diagnóstico por imagem , Córtex Cerebral/metabolismo , Reconhecimento Facial/fisiologia , Feminino , Ácido Glutâmico/metabolismo , Hipocampo/diagnóstico por imagem , Humanos , Espectroscopia de Ressonância Magnética , Masculino , Tálamo/diagnóstico por imagem , Tálamo/metabolismo , Adulto Jovem
14.
Cereb Cortex ; 30(3): 1345-1356, 2020 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-31368487

RESUMO

Univariate analyses of structural neuroimaging data have produced heterogeneous results regarding anatomical sex- and gender-related differences. The current study aimed at delineating and cross-validating brain volumetric surrogates of sex and gender by comparing the structural magnetic resonance imaging data of cis- and transgender subjects using multivariate pattern analysis. Gray matter (GM) tissue maps of 29 transgender men, 23 transgender women, 35 cisgender women, and 34 cisgender men were created using voxel-based morphometry and analyzed using support vector classification. Generalizability of the models was estimated using repeated nested cross-validation. For external validation, significant models were applied to hormone-treated transgender subjects (n = 32) and individuals diagnosed with depression (n = 27). Sex was identified with a balanced accuracy (BAC) of 82.6% (false discovery rate [pFDR] < 0.001) in cisgender, but only with 67.5% (pFDR = 0.04) in transgender participants indicating differences in the neuroanatomical patterns associated with sex in transgender despite the major effect of sex on GM volume irrespective of the self-identification as a woman or man. Gender identity and gender incongruence could not be reliably identified (all pFDR > 0.05). The neuroanatomical signature of sex in cisgender did not interact with depressive features (BAC = 74.7%) but was affected by hormone therapy when applied in transgender women (P < 0.001).


Assuntos
Encéfalo/anatomia & histologia , Identidade de Gênero , Caracteres Sexuais , Adulto , Encéfalo/diagnóstico por imagem , Feminino , Substância Cinzenta/anatomia & histologia , Substância Cinzenta/diagnóstico por imagem , Humanos , Imageamento por Ressonância Magnética , Masculino , Análise Multivariada , Tamanho do Órgão , Pessoas Transgênero , Adulto Jovem
15.
Int J Neuropsychopharmacol ; 23(1): 20-25, 2020 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-31740958

RESUMO

BACKGROUND: Treatment-resistant depression is among the most debilitating conditions in psychiatry. Recent studies have associated alterations in white matter microstructure measured with magnetic resonance imaging with poor antidepressant response. Therefore, the extent to which electroconvulsive therapy, the most effective therapeutic option for treatment-resistant depression, affects white matter microstructure warrants investigation. METHODS: A total 13 patients suffering from severe unipolar treatment-resistant depression underwent magnetic resonance imaging with a diffusion tensor imaging sequence before and after undergoing a series of right unilateral electroconvulsive therapy. Diffusivity metrics were compared voxel-wise using tract-based spatial statistics and repeated-measures ANOVA. RESULTS: A total 12 patients responded to electroconvulsive therapy and 9 were classified as remitters. An increase in axial diffusivity was observed in the posterior limb of the internal capsule of the right hemisphere (PFWE ≤ .05). The increase in this area was higher in the right compared with the left hemisphere (P < .05). No correlation of this effect with treatment response could be found. CONCLUSIONS: The strong lateralization of effects to the hemisphere of electrical stimulation suggests an effect of electroconvulsive therapy on diffusivity metrics which is dependent of electrode placement. Investigation in controlled studies is necessary to reveal to what extent the effects of electroconvulsive therapy on white matter microstructure are related to clinical outcomes and electrode placement.


Assuntos
Transtorno Depressivo Resistente a Tratamento/diagnóstico por imagem , Transtorno Depressivo Resistente a Tratamento/terapia , Imagem de Tensor de Difusão , Eletroconvulsoterapia , Substância Branca/diagnóstico por imagem , Adolescente , Adulto , Feminino , Humanos , Cápsula Interna/diagnóstico por imagem , Masculino , Pessoa de Meia-Idade , Adulto Jovem
16.
Int J Neuropsychopharmacol ; 22(8): 513-522, 2019 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-31175352

RESUMO

BACKGROUND: Studies investigating hippocampal volume changes after treatment with serotonergic antidepressants in patients with major depressive disorder yielded inconsistent results, and effects on hippocampal subfields are unclear. METHODS: To detail treatment effects on total hippocampal and subfield volumes, we conducted an open-label study with escitalopram followed by venlafaxine upon nonresponse in 20 unmedicated patients with major depressive disorder. Before and after 12 weeks treatment, we measured total hippocampal formation volumes and subfield volumes with ultra-high field (7 Tesla), T1-weighted, structural magnetic resonance imaging, and FreeSurfer. Twenty-eight remitted patients and 22 healthy subjects were included as controls. We hypothesized to detect increased volumes after treatment in major depressive disorder. RESULTS: We did not detect treatment-related changes of total hippocampal or subfield volumes in patients with major depressive disorder. Secondary results indicated that the control group of untreated, stable remitted patients, compared with healthy controls, had larger volumes of the right hippocampal-amygdaloid transition area and right fissure at both measurement time points. Depressed patients exhibited larger volumes of the right subiculum compared with healthy controls at MRI-2. Exploratory data analyses indicated lower baseline volumes in the subgroup of remitting (n = 10) vs nonremitting (n = 10) acute patients. CONCLUSIONS: The results demonstrate that monoaminergic antidepressant treatment in major depressive disorder patients was not associated with volume changes in hippocampal subfields. Studies with larger sample sizes to detect smaller effects as well as other imaging modalities are needed to further assess the impact of antidepressant treatment on hippocampal subfields.


Assuntos
Afeto/efeitos dos fármacos , Antidepressivos de Segunda Geração/uso terapêutico , Citalopram/uso terapêutico , Transtorno Depressivo Maior/tratamento farmacológico , Hipocampo/efeitos dos fármacos , Imageamento por Ressonância Magnética , Inibidores Seletivos de Recaptação de Serotonina/uso terapêutico , Inibidores da Recaptação de Serotonina e Norepinefrina/uso terapêutico , Cloridrato de Venlafaxina/uso terapêutico , Adolescente , Adulto , Áustria , Transtorno Depressivo Maior/diagnóstico por imagem , Transtorno Depressivo Maior/fisiopatologia , Transtorno Depressivo Maior/psicologia , Substituição de Medicamentos , Feminino , Hipocampo/fisiopatologia , Humanos , Masculino , Pessoa de Meia-Idade , Valor Preditivo dos Testes , Indução de Remissão , Resultado do Tratamento , Adulto Jovem
17.
Front Mol Neurosci ; 12: 28, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30837839

RESUMO

Purpose: Advanced analysis methods for multi-voxel magnetic resonance spectroscopy (MRS) are crucial for neurotransmitter quantification, especially for neurotransmitters showing different distributions across tissue types. So far, only a handful of studies have used region of interest (ROI)-based labeling approaches for multi-voxel MRS data. Hence, this study aims to provide an automated ROI-based labeling tool for 3D-multi-voxel MRS data. Methods: MRS data, for automated ROI-based labeling, was acquired in two different spatial resolutions using a spiral-encoded, LASER-localized 3D-MRS imaging sequence with and without MEGA-editing. To calculate the mean metabolite distribution within selected ROIs, masks of individual brain regions were extracted from structural T1-weighted images using FreeSurfer. For reliability testing of automated labeling a comparison to manual labeling and single voxel selection approaches was performed for six different subcortical regions. Results: Automated ROI-based labeling showed high consistency [intra-class correlation coefficient (ICC) > 0.8] for all regions compared to manual labeling. Higher variation was shown when selected voxels, chosen from a multi-voxel grid, uncorrected for voxel composition, were compared to labeling methods using spatial averaging based on anatomical features within gray matter (GM) volumes. Conclusion: We provide an automated ROI-based analysis approach for various types of 3D-multi-voxel MRS data, which dramatically reduces hands-on time compared to manual labeling without any possible inter-rater bias.

18.
Br J Psychiatry ; 214(3): 159-167, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30442205

RESUMO

BACKGROUND: Electroconvulsive therapy (ECT) is the treatment of choice for severe mental illness including treatment-resistant depression (TRD). Increases in volume of the hippocampus and amygdala following ECT have consistently been reported.AimsTo investigate neuroplastic changes after ECT in specific hippocampal subfields and amygdala nuclei using high-resolution structural magnetic resonance imaging (MRI) (trial registration: clinicaltrials.gov - NCT02379767). METHOD: MRI scans were carried out in 14 patients (11 women, 46.9 years (s.d. = 8.1)) with unipolar TRD twice before and once after a series of right unilateral ECT in a pre-post study design. Volumes of subcortical structures, including subfields of the hippocampus and amygdala, and cortical thickness were extracted using FreeSurfer. The effect of ECT was tested using repeated-measures ANOVA. Correlations of imaging and clinical parameters were explored. RESULTS: Increases in volume of the right hippocampus by 139.4 mm3 (s.d. = 34.9), right amygdala by 82.3 mm3 (s.d. = 43.9) and right putamen by 73.9 mm3 (s.d. = 77.0) were observed. These changes were localised in the basal and lateral nuclei, and the corticoamygdaloid transition area of the amygdala, the hippocampal-amygdaloid transition area and the granule cell and molecular layer of the dentate gyrus. Cortical thickness increased in the temporal, parietal and insular cortices of the right hemisphere. CONCLUSIONS: Following ECT structural changes were observed in hippocampal subfields and amygdala nuclei that are specifically implicated in the pathophysiology of depression and stress-related disorders and retain a high potential for neuroplasticity in adulthood.Declaration of interestS.K. has received grants/research support, consulting fees and/or honoraria within the past 3 years from Angelini, AOP Orphan Pharmaceuticals AG, AstraZeneca, Celegne GmbH, Eli Lilly, Janssen-Cilag Pharma GmbH, KRKA-Pharma, Lundbeck A/S, Neuraxpharm, Pfizer, Pierre Fabre, Schwabe and Servier. R.L. received travel grants and/or conference speaker honoraria from Shire, AstraZeneca, Lundbeck A/S, Dr. Willmar Schwabe GmbH, Orphan Pharmaceuticals AG, Janssen-Cilag Pharma GmbH, and Roche Austria GmbH.


Assuntos
Tonsila do Cerebelo/diagnóstico por imagem , Córtex Cerebral/diagnóstico por imagem , Transtorno Depressivo Resistente a Tratamento/terapia , Hipocampo/diagnóstico por imagem , Adulto , Transtorno Depressivo Resistente a Tratamento/diagnóstico por imagem , Eletroconvulsoterapia , Feminino , Humanos , Estudos Longitudinais , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Tamanho do Órgão , Resultado do Tratamento
20.
Cereb Cortex ; 29(1): 372-382, 2019 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-30357321

RESUMO

Parcellation of distinct areas in the cerebral cortex has a long history in neuroscience and is of great value for the study of brain function, specialization, and alterations in neuropsychiatric disorders. Analysis of cytoarchitectonical features has revealed their close association with molecular profiles based on protein density. This provides a rationale for the use of in vivo molecular imaging data for parcellation of the cortex with the advantage of whole-brain coverage. In the current work, parcellation was based on expression of key players of the serotonin neurotransmitter system. Positron emission tomography was carried out for the quantification of serotonin 1A (5-HT1A, n = 30) and 5-HT2A receptors (n = 22), the serotonin-degrading enzyme monoamine oxidase A (MAO-A, n = 32) and the serotonin transporter (5-HTT, n = 24) in healthy participants. Cortical protein distribution maps were obtained using surface-based quantification. Based on k-means clustering, silhouette criterion and bootstrapping, five distinct clusters were identified as the optimal solution. The defined clusters proved of high explanatory value for the effects of psychotropic drugs acting on the serotonin system, such as antidepressants and psychedelics. Therefore, the proposed method constitutes a sensible approach towards integration of multimodal imaging data for research and development in neuropharmacology and psychiatry.


Assuntos
Córtex Cerebral/metabolismo , Monoaminoxidase/metabolismo , Tomografia por Emissão de Pósitrons/métodos , Receptor 5-HT1A de Serotonina/metabolismo , Receptor 5-HT2A de Serotonina/metabolismo , Proteínas da Membrana Plasmática de Transporte de Serotonina/metabolismo , Adulto , Córtex Cerebral/diagnóstico por imagem , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Imagem Molecular/métodos , Serotonina/metabolismo , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...