Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Adv ; 7(5)2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33514549

RESUMO

The organic electronic ion pump (OEIP) delivers ions and charged drugs from a source electrolyte, through a charge-selective membrane, to a target electrolyte upon an electric bias. OEIPs have successfully delivered γ-aminobutyric acid (GABA), a neurotransmitter that reduces neuronal excitations, in vitro, and in brain tissue to terminate induced epileptic seizures. However, during pumping, protons (H+), which exhibit higher ionic mobility than GABA, are also delivered and may potentially cause side effects due to large local changes in pH. To reduce the proton transfer, we introduced proton traps along the selective channel membrane. The traps are based on palladium (Pd) electrodes, which selectively absorb protons into their structure. The proton-trapping Pd-OEIP improves the overall performance of the current state-of-the-art OEIP, namely, its temporal resolution, efficiency, selectivity, and dosage precision.

2.
Clin Biochem ; 48(9): 628-30, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25818367

RESUMO

OBJECTIVES: To investigate the impact of freezing in -80°C on the structure of isolated low density lipoproteins (LDLs), using nanotechnology, such as Atomic Force Microscopy (AFM). DESIGN AND METHODS: Blood EDTA plasma was obtained from healthy subject and used immediately to isolate LDL by sequential ultracentrifugation at 10°C in 55,000 rpm for 3h, using a Beckmann XL-90 ultracentrifuge (75Ti rotor), in the presence of KBr in PBS. LDLs were then diluted with PBS until final concentrations of 5 and 15 mg LDL/dl. After initial observation, samples were frozen in -80°C for two weeks and observed again after thawing. Experiments were performed in triplicate on two smooth and clean substrates of different hydrophobicity, glass (HOPG) and Si (c-Si). Statistical significance was set at 0.05. RESULTS: Macroscopically, LDL particles formed aggregations in a dendroid layout. There were no differences between images taken from both substrates (HOPG and c-Si). Frozen samples presented significantly smaller LDL particles, than fresh ones. In specific, mean diameter of LDL particle in the fresh LDL sample was 19.77 nm, ranging from 13.34 to 28.76 nm. The frozen LDL sample had a mean diameter of 5.2 nm, ranging from 2.0 to 8.0 nm, which was significantly different from the unfrozen. CONCLUSIONS: Atomic Force Microscopy showed that freezing of LDL causes alterations in their size.


Assuntos
Congelamento , Lipoproteínas LDL/ultraestrutura , Adolescente , Criança , Criopreservação , Humanos , Lipoproteínas LDL/sangue , Lipoproteínas LDL/isolamento & purificação , Microscopia de Força Atômica , Nanotecnologia , Tamanho da Partícula , Ultracentrifugação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...