Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 71
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Pept Sci ; 30(6): e3571, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38374800

RESUMO

The self-assembly in aqueous solution of three Fmoc-amino acids with hydrophobic (aliphatic or aromatic, alanine or phenylalanine) or hydrophilic cationic residues (arginine) is compared. The critical aggregation concentrations were obtained using intrinsic fluorescence or fluorescence probe measurements, and conformation was probed using circular dichroism spectroscopy. Self-assembled nanostructures were imaged using cryo-transmission electron microscopy and small-angle X-ray scattering (SAXS). Fmoc-Ala is found to form remarkable structures comprising extended fibril-like objects nucleating from spherical cores. In contrast, Fmoc-Arg self-assembles into plate-like crystals. Fmoc-Phe forms extended structures, in a mixture of straight and twisted fibrils coexisting with nanotapes. Spontaneous flow alignment of solutions of Fmoc-Phe assemblies is observed by SAXS. The cytocompatibility of the three Fmoc-amino acids was also compared via MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] mitochondrial activity assays. All three Fmoc-amino acids are cytocompatible with L929 fibroblasts at low concentration, and Fmoc-Arg shows cell viability up to comparatively high concentration (0.63 mM).


Assuntos
Aminoácidos , Fluorenos , Interações Hidrofóbicas e Hidrofílicas , Fluorenos/química , Aminoácidos/química , Animais , Camundongos , Sobrevivência Celular/efeitos dos fármacos
2.
Biomacromolecules ; 25(2): 1205-1213, 2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38204421

RESUMO

The conformation and self-assembly of two pairs of model lipidated tripeptides in aqueous solution are probed using a combination of spectroscopic methods along with cryogenic-transmission electron microscopy (cryo-TEM) and small-angle X-ray scattering (SAXS). The palmitoylated lipopeptides comprise C16-YKK or C16-WKK (with two l-lysine residues) or their respective derivatives containing d-lysine (k), i.e., C16-Ykk and C16-Wkk. All four molecules self-assemble into spherical micelles which show structure factor effects in SAXS profiles due to intermicellar packing in aqueous solution. Consistent with micellar structures, the tripeptides in the coronas have a largely unordered conformation, as probed using spectroscopic methods. The molecules are found to have good cytocompatibility with fibroblasts at sufficiently low concentrations, although some loss of cell viability is noted at the highest concentrations examined (above the critical aggregation concentration of the lipopeptides, determined from fluorescence dye probe measurements). Preliminary tests also showed antimicrobial activity against both Gram-negative and Gram-positive bacteria.


Assuntos
Anti-Infecciosos , Lipopeptídeos , Lipopeptídeos/farmacologia , Lipopeptídeos/química , Lisina , Espalhamento a Baixo Ângulo , Difração de Raios X , Anti-Infecciosos/farmacologia , Micelas
3.
Biomacromolecules ; 24(11): 5403-5413, 2023 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-37914531

RESUMO

There has been considerable interest in peptides in which the Fmoc (9-fluorenylmethoxycarbonyl) protecting group is retained at the N-terminus, since this bulky aromatic group can drive self-assembly, and Fmoc-peptides are biocompatible and have applications in cell culture biomaterials. Recently, analogues of new amino acids with 2,7-disulfo-9-fluorenylmethoxycarbonyl (Smoc) protecting groups have been developed for water-based peptide synthesis. Here, we report on the self-assembly and biocompatibility of Smoc-Ala, Smoc-Phe and Smoc-Arg as examples of Smoc conjugates to aliphatic, aromatic, and charged amino acids, respectively. Self-assembly occurs at concentrations above the critical aggregation concentration (CAC). Cryo-TEM imaging and SAXS reveal the presence of nanosheet, nanoribbon or nanotube structures, and spectroscopic methods (ThT fluorescence circular dichroism and FTIR) show the presence of ß-sheet secondary structure, although Smoc-Ala solutions contain significant unaggregated monomer content. Smoc shows self-fluorescence, which was used to determine CAC values of the Smoc-amino acids from fluorescence assays. Smoc fluorescence was also exploited in confocal microscopy imaging with fibroblast cells, which revealed its uptake into the cytoplasm. The biocompatibility of these Smoc-amino acids was found to be excellent with zero cytotoxicity (in fact increased metabolism) to fibroblasts at low concentration.


Assuntos
Aminoácidos , Água , Aminoácidos/química , Espalhamento a Baixo Ângulo , Difração de Raios X , Peptídeos/química
4.
Chembiochem ; 24(19): e202300472, 2023 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-37529857

RESUMO

Cyclodextrins are saccharide ring molecules which act as host cavities that can encapsulate small guest molecules or thread polymer chains. We investigate the influence of alpha-cyclodextrin (αCD) on the aqueous solution self-assembly of a peptide-polymer conjugate YYKLVFF-PEG3K previously studied by our group [Castelletto et al., Polym. Chem., 2010, 1, 453-459]. This conjugate comprises a designed amyloid-forming peptide YYKLVFF that contains the KLVFF sequence from Amyloid ß peptide, Aß16-20, along with two aromatic tyrosine residues to enhance hydrophobicity, as well as polyethylene glycol PEG with molar mass 3 kg mol-1 . The conjugate self-assembles into ß-sheet fibrils in aqueous solution. Here we show that complexation with αCD instead generates free-floating nanosheets in aqueous solution (with a ß-sheet structure). The nanosheets comprise a bilayer with a hydrophobic peptide core and highly swollen PEG outer layers. The transition from fibrils to nanosheets is driven by an increase in the number of αCD molecules threaded on the PEG chains, as determined by 1 H NMR spectroscopy. These findings point to the use of cyclodextrin additives as a powerful means to tune the solution self-assembly in peptide-polymer conjugates and potentially other polymer/biomolecular hybrids.

5.
Langmuir ; 39(24): 8516-8522, 2023 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-37289534

RESUMO

Lipopolysaccharides (LPSs) based on lipid A produced by bacteria are of interest due to their bioactivity in stimulating immune responses, as are simpler synthetic components or analogues. Here, the self-assembly in water of two monodisperse lipid A derivatives based on simplified bacterial LPS structures is examined and compared to that of a native Escherichia coli LPS using small-angle X-ray scattering and cryogenic transmission electron microscopy. The critical aggregation concentration is obtained from fluorescence probe experiments, and conformation is probed using circular dichroism spectroscopy. The E. coli LPS is found to form wormlike micelles, whereas the synthetic analogues bearing six lipid chains and with four or two saccharide head groups (Kdo2-lipid A and monophosphoryl lipid A) self-assemble into nanosheets or vesicles, respectively. These observations are rationalized by considering the surfactant packing parameter.


Assuntos
Lipídeo A , Lipopolissacarídeos , Lipopolissacarídeos/química , Escherichia coli/química , Glicosilação , Água/química , Micelas
6.
Soft Matter ; 19(25): 4686-4696, 2023 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-37313785

RESUMO

Short and ultra-short peptides have recently emerged as suitable building blocks for the fabrication of self-assembled innovative materials. Peptide aggregation is strictly related to the amino acids composing the sequence and their capability to establish intermolecular interactions. Additional structural and functional properties can also be achieved by peptide derivatization (e.g. with polymeric moieties, alkyl chains or other organic molecules). For instance, peptide amphiphiles (PAs), containing one or more alkyl tails on the backbone, have a propensity to form highly ordered nanostructures like nanotapes, twisted helices, nanotubes and cylindrical nanostructures. Further lateral interactions among peptides can also promote hydrogelation. Here we report the synthesis and the aggregation behaviour of four PAs containing cationic tetra- or hexa-peptides (C19-VAGK, C19-K1, C19-K2 and C19-K3) derivatized with a nonadecanoic alkyl chain. In their acetylated (Ac-) or fluorenylated (Fmoc-) versions, these peptides previously demonstrated the ability to form biocompatible hydrogels potentially suitable as extracellular matrices for tissue engineering or diagnostic MRI applications. In the micromolar range, PAs self-assemble in aqueous solution into nanotapes, or small clusters, resulting in high biocompatibility on HaCat cells up to 72 hours of incubation. Moreover, C19-VAGK also forms a gel at a concentration of 5 wt%.


Assuntos
Nanoestruturas , Nanotubos , Peptídeos/química , Nanoestruturas/química , Estrutura Secundária de Proteína , Cátions
7.
Proc Natl Acad Sci U S A ; 120(4): e2211509120, 2023 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-36649434

RESUMO

Gas vesicles used as contrast agents for noninvasive ultrasound imaging must be formulated to be stable, and their mechanical properties must be assessed. We report here the formation of perfluoro-n-butane microbubbles coated with surface-active proteins that are produced by filamentous fungi (hydrophobin HFBI from Trichoderma reesei). Using pendant drop and pipette aspiration techniques, we show that these giant gas vesicles behave like glassy polymersomes, and we discover novel gas extraction regimes. We develop a model to analyze the micropipette aspiration of these compressible gas vesicles and compare them to incompressible liquid-filled vesicles. We introduce a sealing parameter to characterize the leakage of gas under aspiration through the pores of the protein coating. Utilizing this model, we can determine the elastic dilatation modulus, surface viscosity, and porosity of the membrane. These results demonstrate the engineering potential of protein-coated bubbles for echogenic and therapeutic applications and extend the use of the pipette aspiration technique to compressible and porous systems.


Assuntos
Porosidade
8.
Biomacromolecules ; 24(1): 213-224, 2023 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-36520063

RESUMO

The conformation and self-assembly of four lipopeptides, peptide amphiphiles comprising peptides conjugated to lipid chains, in aqueous solution have been examined. The peptide sequence in all four lipopeptides contains the integrin cell adhesion RGDS motif, and the cytocompatibility of the lipopeptides is also analyzed. Lipopeptides have either tetradecyl (C14, myristyl) or hexadecyl (C16, palmitoyl) lipid chains and peptide sequence WGGRGDS or GGGRGDS, that is, with either a tryptophan-containing WGG or triglycine GGG tripeptide spacer between the bioactive peptide motif and the alkyl chain. All four lipopeptides self-assemble above a critical aggregation concentration (CAC), determined through several comparative methods using circular dichroism (CD) and fluorescence. Spectroscopic methods [CD and Fourier transform infrared (FTIR) spectroscopy] show the presence of ß-sheet structures, consistent with the extended nanotape, helical ribbon, and nanotube structures observed by cryogenic transmission electron microscopy (cryo-TEM). The high-quality cryo-TEM images clearly show the coexistence of helically twisted ribbon and nanotube structures for C14-WGGRGDS, which highlight the mechanism of nanotube formation by the closure of the ribbons. Small-angle X-ray scattering shows that the nanotapes comprise highly interdigitated peptide bilayers, which are also present in the walls of the nanotubes. Hydrogel formation was observed at sufficiently high concentrations or could be induced by a heat/cool protocol at lower concentrations. Birefringence due to nematic phase formation was observed for several of the lipopeptides, along with spontaneous flow alignment of the lyotropic liquid crystal structure in capillaries. Cell viability assays were performed using both L929 fibroblasts and C2C12 myoblasts to examine the potential uses of the lipopeptides in tissue engineering, with a specific focus on application to cultured (lab-grown) meat, based on myoblast cytocompatibility. Indeed, significantly higher cytocompatibility of myoblasts was observed for all four lipopeptides compared to that for fibroblasts, in particular at a lipopeptide concentration below the CAC. Cytocompatibility could also be improved using hydrogels as cell supports for fibroblasts or myoblasts. Our work highlights that precision control of peptide sequences using bulky aromatic residues within "linker sequences" along with alkyl chain selection can be used to tune the self-assembled nanostructure. In addition, the RGDS-based lipopeptides show promise as materials for tissue engineering, especially those of muscle precursor cells.


Assuntos
Lipopeptídeos , Nanoestruturas , Lipopeptídeos/farmacologia , Lipopeptídeos/química , Adesão Celular , Sequência de Aminoácidos , Mioblastos , Dicroísmo Circular
9.
J Colloid Interface Sci ; 633: 383-395, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36462264

RESUMO

The use of amphiphilic block copolymers to generate colloidal delivery systems for hydrophobic drugs has been the subject of extensive research, with several formulations reaching the clinical development stages. However, to generate particles of uniform size and morphology, with high encapsulation efficiency, yield and batch-to-batch reproducibility remains a challenge, and various microfluidic technologies have been explored to tackle these issues. Herein, we report the development and optimization of poly(ethylene glycol)-block-(ε-caprolactone) (PEG-b-PCL) nanoparticles for intravenous delivery of a model drug, sorafenib. We developed and optimized a glass capillary microfluidic nanoprecipitation process and studied systematically the effects of formulation and process parameters, including different purification techniques, on product quality and batch-to-batch variation. The optimized formulation delivered particles with a spherical morphology, small particle size (dH < 80 nm), uniform size distribution (PDI < 0.2), and high drug loading degree (16 %) at 54 % encapsulation efficiency. Furthermore, the stability and in vitro drug release were evaluated, showing that sorafenib was released from the NPs in a sustained manner over several days. Overall, the study demonstrates a microfluidic approach to produce sorafenib-loaded PEG-b-PCL NPs and provides important insight into the effects of nanoprecipitation parameters and downstream processing on product quality.


Assuntos
Nanopartículas , Neoplasias , Humanos , Sorafenibe , Portadores de Fármacos/química , Microfluídica , Reprodutibilidade dos Testes , Poliésteres/química , Polietilenoglicóis/química , Nanopartículas/química , Tamanho da Partícula
10.
ACS Omega ; 7(50): 46843-46848, 2022 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-36570178

RESUMO

Analogues of benzene-1,3,5-tricarboxamide bearing combinations of different alkyl chains (dodecyl to octadecyl) and ester-linked PEG (polyethylene glycol) chains are shown to self-assemble into either micelles or nanotapes in aqueous solution, depending on the architecture (number of alkyl vs PEG chains). The cytotoxicity to cells is selectively greater for breast cancer cells than fibroblast controls in a dose-dependent manner. The compounds show strong stability, retaining their self-assembled structures at low pH (relevant to acidic tumor conditions) and in buffer and cell culture media.

11.
Nanoscale Adv ; 4(17): 3592-3599, 2022 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-36134354

RESUMO

The large-scale use of glyphosate pesticides in food production has attracted attention due to environmental damage and toxicity risks. Several regulatory authorities have established safe limits or concentrations of these pesticides in water and various food products consumed daily. The irreversible inhibition of acetylcholinesterase (AChE) activity is one of the strategies used for pesticide detection. Herein, we found that lipopeptide sequences can act as biomimetic microenvironments of AChE, showing higher catalytic activities than natural enzymes in an aqueous solution, based on IC50 values. These biomolecules contain in the hydrophilic part the amino acids l-proline (P), l-arginine (R), l-tryptophan (W), and l-glycine (G), covalently linked to a hydrophobic part formed by one or two long aliphatic chains. The obtained materials are referred to as compounds 1 and 2, respectively. According to fluorescence assays, 2 is more hydrophobic than 1. The circular dichroism (CD) data present a significant difference in the molar ellipticity values, likely related to distinct conformations assumed by the proline residue in the lipopeptide supramolecular structure in solution. The morphological aspect was further characterized using small-angle X-ray scattering (SAXS) and cryogenic transmission electron microscopy (cryo-TEM), which showed that compounds 1 and 2 self-assembly into cylindrical and planar core-shell structures, respectively. The mimetic AchE behaviour of lipopeptides was confirmed by Ellman's hydrolysis reaction, where the proline residue in the peptides act as a nucleophilic scavenger of organophosphate pesticides. Moreover, the isothermal titration calorimetry (ITC) experiments revealed that host-guest interactions in both systems were dominated by enthalpically-driven thermodynamics. UV-vis kinetic experiments were performed to assess the inhibition of the lipopeptide catalytic activity and the IC50 values were obtained, and we found that the detection limit correlated with the increase in hydrophobicity of the lipopeptides, implying the micellization process is more favorable.

12.
Chemistry ; 28(68): e202200947, 2022 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-36116117

RESUMO

Transmission electron microscopy (TEM) observations of negatively stained cell membrane (CM)-coated polymeric nanoparticles (NPs) reveal a characteristic core-shell structure. However, negative staining agents can create artifacts that complicate the determination of the actual NP structure. Herein, it is demonstrated with various bare polymeric core NPs, such as poly(lactic-co-glycolic acid) (PLGA), poly(ethylene glycol) methyl ether-block-PLGA, and poly(caprolactone), that certain observed core-shell structures are actually artifacts caused by the staining process. To address this issue, fluorescence quenching was applied to quantify the proportion of fully coated NPs and statistical TEM analysis was used to identify and differentiate whether the observed core-shell structures of CM-coated PLGA (CM-PLGA) NPs are due to artifacts or to the CM coating. Integrated shells in TEM images of negatively stained CM-PLGA NPs are identified as artifacts. The present results challenge current understanding of the structure of CM-coated polymeric NPs and encourage researchers to use the proposed characterization approach to avoid misinterpretations.


Assuntos
Membrana Celular
13.
ACS Nano ; 16(10): 16608-16616, 2022 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-36178116

RESUMO

We address the problem of de novo design and synthesis of nucleic acid nanostructures, a challenge that has been considered in the area of DNA nanotechnology since the 1980s and more recently in the area of RNA nanotechnology. Toward this goal, we introduce a general algorithmic design process and software pipeline for rendering 3D wireframe polyhedral nanostructures in single-stranded RNA. To initiate the pipeline, the user creates a model of the desired polyhedron using standard 3D graphic design software. As its output, the pipeline produces an RNA nucleotide sequence whose corresponding RNA primary structure can be transcribed from a DNA template and folded in the laboratory. As case examples, we design and characterize experimentally three 3D RNA nanostructures: a tetrahedron, a triangular bipyramid, and a triangular prism. The design software is openly available and also provides an export of the targeted 3D structure into the oxDNA molecular dynamics simulator for easy simulation and visualization.


Assuntos
Nanoestruturas , RNA , Conformação de Ácido Nucleico , Nanotecnologia , Nanoestruturas/química , DNA/química
14.
Chem Commun (Camb) ; 57(67): 8360-8363, 2021 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-34338257

RESUMO

The self-assembly in aqueous solution of benzene-1,3,5-tricarboxamide (BTA) bearing one alkyl chain and two PEG (polyethylene glycol) chains or two alkyl chains and one PEG chain yields completely distinct nanostructures. Two series of derivatives were synthesized and extensively characterized and electron microscopy and small-angle X-ray scattering (SAXS) reveal micelle structures for derivatives with one alkyl and two PEG chains, but nanotapes and nanoribbons for the series with two alkyl and one PEG chain.

15.
Int J Pharm ; 607: 121018, 2021 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-34416329

RESUMO

In this study, novel cupric-tirapazamine [Cu(TPZ)2]-liposomes were developed as an effective hypoxia-targeted therapeutic, which potentiated radiotherapy in a three dimensional (3D) prostate cancer (PCa) model. To overcome the low water solubility of the Cu(TPZ)2, a remote loading method was developed to efficiently load the lipophilic complex into different liposomal formulations. The effect of pH, temperature, PEGylation, lipid composition, liposome size, lipid: complex ratio on the liposome properties, and drug loading was evaluated. The highest loading efficiency was obtained at neutral pH, which was independent of lipid composition and incubation time. In addition, enhanced drug loading was achieved upon decreasing the lipid:complex molar ratio with minimal effects on liposomes' morphology. Interestingly, the in vitro potency of the developed liposomes was easily manipulated by changing the lipid composition. The hydrophilic nature of our liposomal formulations improved the complex's solubility, leading to enhanced cellular uptake and toxicity, both in PCa monolayers and tumour spheroids. Moreover, Cu(TPZ)2-loaded liposomes combined with radiation, showed a significant reduction in PCa spheroids growth rate, compared to the free complex or radiation alone, which could potentiate radiotherapy in patients with localised advanced PCa.


Assuntos
Lipossomos , Neoplasias da Próstata , Humanos , Hipóxia , Masculino , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/radioterapia , Solubilidade , Tirapazamina
16.
Langmuir ; 37(30): 9170-9178, 2021 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-34292730

RESUMO

The peptide angiotensin-converting enzyme inhibitors captopril and lisinopril are unexpectedly shown to exhibit critical aggregation concentration (CAC) behavior through measurements of surface tension, electrical conductivity, and dye probe fluorescence. These three measurements provide similar values for the CAC, and there is also evidence from circular dichroism spectroscopy for a possible conformational change in the peptides at the same concentration. Cryogenic transmission electron microscopy indicates the formation of micelle-like aggregates above the CAC, which can thus be considered a critical micelle concentration, and the formation of aggregates with a hydrodynamic radius of ∼6-7 nm is also evidenced by dynamic light scattering. We also used synchrotron radiation X-ray diffraction to determine the single-crystal structure of captopril and lisinopril. Our results improve the accuracy of previous data reported in the literature, obtained using conventional X-ray sources. We also studied the structure of aqueous solutions containing captopril or lisinopril at high concentrations. The aggregation may be driven by intermolecular interactions between the proline moiety of captopril molecules or between the phenylalanine moiety of lisinopril molecules.


Assuntos
Captopril , Lisinopril , Inibidores da Enzima Conversora de Angiotensina
17.
Macromol Rapid Commun ; 42(12): e2100092, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33955068

RESUMO

Nanoparticle assembly is intensely surveyed because of the numerous applications within fields such as catalysis, batteries, and biomedicine. Here, directed assembly of rod-like, biologically derived cellulose nanocrystals (CNCs) within the template of a processed cotton fiber cell wall, that is, the native origin of CNCs, is reported. It is a system where the assembly takes place in solid state simultaneously with the top-down formation of the CNCs via hydrolysis with HCl vapor. Upon hydrolysis, cellulose microfibrils in the fiber break down to CNCs that then pack together, resulting in reduced pore size distribution of the original fiber. The denser packing is demonstrated by N2 adsorption, water uptake, thermoporometry, and small-angle X-ray scattering, and hypothetically assigned to attractive van der Waals interactions between the CNCs.


Assuntos
Celulose , Nanopartículas , Parede Celular , Fibra de Algodão , Hidrólise
18.
Materials (Basel) ; 14(9)2021 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-33925419

RESUMO

The remarkable tunability of 2D carbon structures combined with their non-toxicity renders them interesting candidates for thermoelectric applications. Despite some limitations related to their high thermal conductivity and low Seebeck coefficients, several other unique properties of the graphene-like structures could out-weight these weaknesses in some applications. In this study, hybrid structures of alumina ceramics and graphene encapsulated alumina nanofibers are processed by spark plasma sintering to exploit advantages of thermoelectric properties of graphene and high stiffness of alumina. The paper focuses on thermal and electronic transport properties of the systems with varying content of nanofillers (1-25 wt.%) and demonstrates an increase of the Seebeck coefficient and a reduction of the thermal conductivity with an increase in filler content. As a result, the highest thermoelectric figure of merit is achieved in a sample with 25 wt.% of the fillers corresponding to ~3 wt.% of graphene content. The graphene encapsulated nanofibrous fillers, thus, show promising potential for thermoelectric material designs by tuning their properties via carrier density modification and Fermi engineering through doping.

19.
Soft Matter ; 17(11): 3096-3104, 2021 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-33598669

RESUMO

A designed surfactant-like peptide is shown, using a combination of cryogenic-transmission electron microscopy and small-angle X-ray scattering, to have remarkable pH-dependent self-assembly properties. Peptide Arg3-Leu12 (R3L12) forms a network of peptide nanotubes at pH 9 and below. These are associated with α-helical conformation in a "cross-α" nanotube structure, in which peptide dimers lie perpendicular to the nanotube axis, with arginine coated inner and outer nanotube walls. In contrast, this peptide forms decorated vesicular aggregates at higher pH values, close to the pKa of the arginine residues. These structures are associated with a loss of α-helical order as detected through X-ray scattering, circular dichroism and FTIR spectroscopy, the latter technique also revealing a loss of ordering of leucine side chains. This suggests a proposed model for the decorated or patchy vesicular structures that comprises disordered peptide as the matrix of the membrane, with small domains of ordered peptide dimers forming the minority domains. We ascribe this to a lipid-raft like phase separation process, due to conformational disordering of the leucine hydrophobic chains. The observation of the self-assembly of a simple surfactant-like peptide into these types of nanostructure is remarkable, and peptide R3L12 shows unique pH-dependent morphological and conformational behaviour, with the potential for a range of future applications.


Assuntos
Nanoestruturas , Tensoativos , Dicroísmo Circular , Concentração de Íons de Hidrogênio , Peptídeos , Conformação Proteica em alfa-Hélice
20.
Colloids Surf B Biointerfaces ; 199: 111556, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33421927

RESUMO

The biopharmaceuticals market is constantly growing. Despite their advantages over the conventional drugs, biopharmaceuticals have short biological half-lifes, which can be increased using liposomes. However, the common bulk methods to produce biopharmaceuticals-loaded liposomes result in lost of encapsulation efficiency (E.E.), resulting in an expensive process. Herein, the encapsulation of a therapeutic enzyme in liposomes is proposed, using a glass-capillary microfluidic technique. Cu,Zn- Superoxide dismutase (SOD) is successfully encapsulated into liposomes (SOD@Liposomes). SOD@Liposomes with a mean size of 135 ± 41 nm, a polydispersity index of 0.13 ± 0.01, an E.E. of 59 ± 6 % and an enzyme activity of 82 ± 3 % are obtained. in vivo experiments show, through an ear edema model, that SOD@Liposomes administered by the intravenous route enable an edema inhibition of 65 % ± 8 %, over the 20 % ± 13 % of SOD in its free form. The histopathological analyses show a higher inflammatory cell accumulation on the ear treated with SOD in its free form, than treated with SOD@Liposomes. Overall, this work highlights the potential of microfluidics for the production of enzyme-loaded liposomes with high encapsulation efficiency, with the intrinsic advantages of the low time-consuming and easily upscaling microfluidic assembly method.


Assuntos
Lipossomos , Microfluídica , Edema , Humanos , Injeções Intravenosas , Superóxido Dismutase
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...