Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Rev Lett ; 130(5): 050803, 2023 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-36800448

RESUMO

We report on an elementary quantum network of two atomic ions separated by 230 m. The ions are trapped in different buildings and connected with 520(2) m of optical fiber. At each network node, the electronic state of an ion is entangled with the polarization state of a single cavity photon; subsequent to interference of the photons at a beam splitter, photon detection heralds entanglement between the two ions. Fidelities of up to (88.0+2.2-4.7)% are achieved with respect to a maximally entangled Bell state, with a success probability of 4×10^{-5}. We analyze the routes to improve these metrics, paving the way for long-distance networks of entangled quantum processors.

2.
Nature ; 607(7920): 682-686, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35896644

RESUMO

Cryptographic key exchange protocols traditionally rely on computational conjectures such as the hardness of prime factorization1 to provide security against eavesdropping attacks. Remarkably, quantum key distribution protocols such as the Bennett-Brassard scheme2 provide information-theoretic security against such attacks, a much stronger form of security unreachable by classical means. However, quantum protocols realized so far are subject to a new class of attacks exploiting a mismatch between the quantum states or measurements implemented and their theoretical modelling, as demonstrated in numerous experiments3-6. Here we present the experimental realization of a complete quantum key distribution protocol immune to these vulnerabilities, following Ekert's pioneering proposal7 to use entanglement to bound an adversary's information from Bell's theorem8. By combining theoretical developments with an improved optical fibre link generating entanglement between two trapped-ion qubits, we obtain 95,628 key bits with device-independent security9-12 from 1.5 million Bell pairs created during eight hours of run time. We take steps to ensure that information on the measurement results is inaccessible to an eavesdropper. These measurements are performed without space-like separation. Our result shows that provably secure cryptography under general assumptions is possible with real-world devices, and paves the way for further quantum information applications based on the device-independence principle.

3.
Phys Rev Lett ; 127(4): 040502, 2021 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-34355942

RESUMO

The efficient generation of high-fidelity entangled states is the key element for long-distance quantum communication, quantum computation, and other quantum technologies, and at the same time the most resource-consuming part in many schemes. We present a class of entanglement-assisted entanglement purification protocols that can generate high-fidelity entanglement from noisy, finite-size ensembles with improved yield and fidelity as compared to previous approaches. The scheme utilizes high-dimensional auxiliary entanglement to perform entangling nonlocal measurements and determine the number and positions of errors in an ensemble in a controlled and efficient way, without disturbing the entanglement of good pairs. Our protocols can deal with arbitrary errors, but are best suited for few errors, and work particularly well for decay noise. Our methods are applicable to moderately sized ensembles, as will be important for near term quantum devices.

4.
Phys Rev Lett ; 125(11): 110506, 2020 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-32975988

RESUMO

We report the experimental realization of heralded distribution of single-photon path entanglement at telecommunication wavelengths in a repeater-like architecture. The entanglement is established upon detection of a single photon, originating from one of two spontaneous parametric down-conversion photon pair sources, after erasing the photon's which-path information. In order to certify the entanglement, we use an entanglement witness which does not rely on postselection. We herald entanglement between two locations, separated by a total distance of 2 km of optical fiber, at a rate of 1.6 kHz. This work paves the way towards high-rate and practical quantum repeater architectures.

5.
Phys Rev Lett ; 124(23): 230502, 2020 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-32603141

RESUMO

Device-independent quantum key distribution provides security even when the equipment used to communicate over the quantum channel is largely uncharacterized. An experimental demonstration of device-independent quantum key distribution is however challenging. A central obstacle in photonic implementations is that the global detection efficiency, i.e., the probability that the signals sent over the quantum channel are successfully received, must be above a certain threshold. We here propose a method to significantly relax this threshold, while maintaining provable device-independent security. This is achieved with a protocol that adds artificial noise, which cannot be known or controlled by an adversary, to the initial measurement data (the raw key). Focusing on a realistic photonic setup using a source based on spontaneous parametric down conversion, we give explicit bounds on the minimal required global detection efficiency.

6.
Phys Rev Lett ; 122(6): 060502, 2019 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-30822083

RESUMO

We show that genuine multipartite entanglement of all multipartite pure states in arbitrary finite dimension can be detected in a device-independent way by employing bipartite Bell inequalities on states that are deterministically generated from the initial state via local operations. This leads to an efficient scheme for large classes of multipartite states that are relevant in quantum computation or condensed-matter physics, including cluster states and the ground state of the Affleck-Kennedy-Lieb-Tasaki (AKLT) model. For cluster states the detection of genuine multipartite entanglement involves only measurements on a constant number of systems with an overhead that scales linearly with the system size, while for the AKLT model the overhead is polynomial. In all cases our approach shows some robustness against experimental imperfections.

7.
Phys Rev Lett ; 118(17): 170801, 2017 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-28498713

RESUMO

We consider quantum metrology with arbitrary prior knowledge of the parameter. We demonstrate that a single sensing two-level system can act as a virtual multilevel system that offers increased sensitivity in a Bayesian single-shot metrology scenario, and that allows one to estimate (arbitrary) large parameter values by avoiding phase wraps. This is achieved by making use of additional degrees of freedom or auxiliary systems not participating in the sensing process. The joint system is manipulated by intermediate control operations in such a way that an effective Hamiltonian, with an arbitrary spectrum, is generated that mimics the spectrum of a multisystem interacting with the field. We show how to use additional internal degrees of freedom of a single trapped ion to achieve a high-sensitivity magnetic field sensor for fields with arbitrary prior knowledge.

8.
Phys Rev Lett ; 114(12): 120503, 2015 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-25860727

RESUMO

We show that one can deterministically generate, out of N copies of an unknown unitary operation, up to N^{2} almost perfect copies. The result holds for all operations generated by a Hamiltonian with an unknown interaction strength. This generalizes a similar result in the context of phase-covariant cloning where, however, superreplication comes at the price of an exponentially reduced probability of success. We also show that multiple copies of unitary operations can be emulated by operations acting on a much smaller space, e.g., a magnetic field acting on a single n-level system allows one to emulate the action of the field on n^{2} qubits.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...