Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Regen Ther ; 21: 413-423, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36248630

RESUMO

Introduction: Heart disease is a major cause of mortality worldwide, and the annual number of deaths due to heart disease has increased in recent years. Although heart failure is usually managed with medicines, the ultimate treatment for end-stage disease is heart transplantation or an artificial heart. However, the use of these surgical strategies is limited by issues such as thrombosis, rejection and donor shortages. Regenerative therapies, such as the transplantation of cultured cells and tissues constructed using tissue engineering techniques, are receiving great attention as possible alternative treatments for heart failure. Research is ongoing into the potential clinical use of cardiomyocytes derived from human induced pluripotent stem cells (hiPSC-CMs). However, the energy-producing capacity of cardiomyocytes maintained under previous culture conditions is lower than that of adult primary cardiomyocytes due to immaturity and a reliance on glucose metabolism. Therefore, the aims of this study were to compare the types of fatty acids metabolized between cardiomyocytes in culture and heart cells in vivo and investigate whether the addition of fatty acids to the culture medium affected energy production by cardiomyocytes. Methods: A fatty acid-containing medium was developed based on an analysis of fatty acid consumption by rat primary cardiomyocytes (rat-CMs), and the effects of this medium on adenosine triphosphate (ATP) production were investigated through bioluminescence imaging of luciferase-expressing rat-CMs. Next, the fatty acid content of the medium was further adjusted based on analyses of fatty acid utilization by porcine hearts and hiPSC-CMs. Oxygen consumption analyses were performed to explore whether the fatty acid-containing medium induced hiPSC-CMs to switch from anaerobic metabolism to aerobic metabolism. Furthermore, the effects of the medium on contractile force generated by hiPSC-CM-derived tissue were evaluated. Results: Rat serum, human serum and porcine plasma contained similar types of fatty acid (oleic acid, stearic acid, linoleic acid, palmitic acid and arachidonic acid). The types of fatty acid consumed were also similar between rat-CMs, hiPSC-CMs and porcine heart. The addition of fatty acids to the culture medium increased the bioluminescence of luciferase-expressing rat-CMs (an indirect measure of ATP level), oxygen consumption by hiPSC-CMs, and contractile force generated by cardiac tissues constructed from hiPSC-CMs. Conclusions: hiPSC-CMs metabolize similar types of fatty acid to those consumed by rat-CMs and porcine hearts. Furthermore, the addition of these fatty acids to the culture medium increased energy production by rat-CMs and hiPSC-CMs and enhanced the contractility of myocardial tissue generated from hiPSC-CMs. These findings suggest that the addition of fatty acids to the culture medium stimulates aerobic energy production by cardiomyocytes through ß-oxidation. Since cardiomyocytes cultured in standard media rely primarily on anaerobic glucose metabolism and remain in an immature state, further research is merited to establish whether the addition of fatty acids to the culture medium would improve the energy-producing capacity and maturity of hiPSC-CMs and cardiac tissue constructed from these cells. It is possible that optimizing the metabolism of cultured cardiomyocytes, which require high energy production to sustain their contractile function, will improve the properties of hiPSC-CM-derived tissue, allowing it to be better utilized for disease modeling, drug screening and regenerative therapies for heart failure.

2.
ScientificWorldJournal ; 2013: 359109, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24348153

RESUMO

Recently, regenerative medicine using engineered three-dimensional (3D) tissues has been focused. In the fields of cell therapy and regenerative medicine, mesenchymal stem cells (MSCs) are attractive autologous cell sources. While, in bioengineered tissues, a 3D environment may affect the differentiation of the stem cells, little is known regarding the effect of 3D environment on cellular differentiation. In this study, MSC differentiation in in vitro 3D tissue models was assessed by human endometrial gland-derived MSCs (hEMSCs) and cell sheet technology. hEMSC sheets were layered into cell-dense 3D tissues and were cultured on porous membranes. The tissue sections revealed that chondrocyte-like cells were found within the multilayered cell sheets even at 24 h after layering. Immunostainings of chondrospecific markers were positive within those cell sheet constructs. In addition, sulfated glycosaminoglycan accumulation within the tissues increased in proportion to the numbers of layered cell sheets. The findings suggested that a high cell density and hypoxic environment in 3D tissues by layering cell sheets might accelerate a rapid differentiation of hEMSCs into chondrocytes without the help of chondro-differentiation reagents. These tissue models using cell sheets would give new insights to stem cell differentiation in 3D environment and contribute to the future application of stem cells to cartilage regenerative therapy.


Assuntos
Condrócitos/citologia , Endométrio/citologia , Células-Tronco Mesenquimais/citologia , Biomarcadores/metabolismo , Técnicas de Cultura de Células , Condrócitos/metabolismo , Condrogênese , Colágeno Tipo II/metabolismo , Feminino , Glicosaminoglicanos/metabolismo , Humanos , Receptores de Hialuronatos/metabolismo , Imuno-Histoquímica , Células-Tronco Mesenquimais/metabolismo
3.
Nat Protoc ; 7(5): 850-8, 2012 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-22481530

RESUMO

The fabrication of 3D tissues retaining the original functions of tissues/organs in vitro is crucial for optimal tissue engineering and regenerative medicine. The fabrication of 3D tissues also contributes to the establishment of in vitro tissue/organ models for drug screening. Our laboratory has developed a fabrication system for functional 3D tissues by stacking cell sheets of confluent cultured cells detached from a temperature-responsive culture dish. Here we describe the protocols for the fabrication of 3D tissues by cell sheet engineering. Three-dimensional cardiac tissues fabricated by stacking cardiac cell sheets pulsate spontaneously, synchronously and macroscopically. Via this protocol, it is also possible to fabricate other tissues, such as 3D tissue including capillary-like prevascular networks, from endothelial cells sandwiched between layered cell sheets. Cell sheet stacking technology promises to provide in vitro tissue/organ models and more effective therapies for curing tissue/organ failures.


Assuntos
Técnicas de Cultura de Tecidos , Engenharia Tecidual/métodos , Potenciais de Ação , Animais , Regeneração Tecidual Guiada , Células Endoteliais da Veia Umbilical Humana , Humanos , Hidrogel de Polietilenoglicol-Dimetacrilato , Mioblastos Esqueléticos , Miocárdio/citologia , Ratos , Ratos Wistar
4.
Tissue Eng Part C Methods ; 16(4): 685-92, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19788345

RESUMO

A novel assay system with cell-dense three-dimensional (3D) tissue was developed for measuring the permeability of substances. In this paper, the permeabilities of various molecules containing nutrients, a cytokine, and a chemokine were examined and analyzed. A single-layered cell sheet was approximately 20 mum thick, and as the number of layers of these cell sheets increased, so did the total thickness of the tissue. The diffusion rates of glucose and pyruvic acid were reduced to approximately 30-40% by a single-layered cell sheet compared with the control without the cell sheet, and the diffusion of both substances were completely inhibited by a quadruple-layered cell sheet. The diffusion rate of creatinin was reduced to approximately 50% and 15-20% by a single-layered and by a quintuplet-layered cell sheet, respectively. On the other hand, the diffusion rate of stromal cell-derived factor 1alpha, vascular endothelial growth factor, beta2-microglobulin, and transferrin was reduced to approximately 10%, 5%, 20%, and 10%, by only a single-layered cell sheet, respectively. The diffusion of these substances were completely inhibited by a double-layered cell sheet. These results show that the permeability of substances through 3D tissue significantly decreased with the increase of the molecular weight. Therefore, the system could give a simulated living-tissue condition for measuring the permeability of substances. To our knowledge, this is the first report about measuring the permeability of substances through cell-dense 3D tissues without scaffolds. The assay system is believed to contribute to the progress of physiology, metabology, biochemistry, and pharmacokinetics. Further, the system may give some hints for developing a new dialysis membrane technology for an artificial kidney.


Assuntos
Bioensaio/métodos , Substâncias Macromoleculares/metabolismo , Técnicas de Cultura de Tecidos/métodos , Animais , Linhagem Celular , Forma Celular , Humanos , Mesoderma/citologia , Camundongos , Peso Molecular , Mioblastos/citologia , Permeabilidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...