Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Anal Methods ; 16(16): 2478-2488, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38606568

RESUMO

The demand for monitoring anthropogenic U isotopes, 236U and 233U, in seawater will continue to increase due to radioecological issues and the need for tools for environmental dynamics research. In response to this growing demand, herein, a novel and simple method was developed for the collection of U isotopes in seawater, both in the laboratory and field, using a fabric-like amidoxime adsorbent. The results from the adsorption studies showed that the optimum conditions for processing seawater in a glass beaker were as follows: seawater pH 4, amidoxime adsorbent 0.20 mmol per 500 g seawater and an adsorption time of 9 hours. Alternatively, when using a closed polyethylene container in experiments on-board a ship and using the same ratio of adsorbent to seawater as in the beaker experiment in the laboratory, the optimum conditions were as follows: seawater pH 8 and an adsorption time of 24 hours. Under the above-mentioned conditions, more than 95% of the U underwent adsorption in both the beaker and the polyethylene container experiments. In the case of analyte desorption, more than 80% of U in seawater was recovered using 2-3 mol dm-3 HCl or HNO3 as the eluent. Thus, it was concluded that the amidoxime adsorbent can serve as a simple and effective pre-concentration method for the ultra-trace monitoring of U isotopes in seawater.

2.
Chempluschem ; 89(4): e202400061, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38316619

RESUMO

Invited for this month's cover are the collaborating groups of Dr. Ryohei Kakuchi and Ms. Kiho Matsubara at Gunma University, Japan, Prof. Kei Takahashi at Fukuoka Institute of Technology and The Institute of Statistical Mathematics, Japan, Prof. Takeshi Matsuda at Hannan University, Japan, Dr. Noriaki Seko and Dr. Yuji Ueki at National Institutes for Quantum Science and Technology, Japan. The cover picture shows the machine learning-based optimization and interpretation of radiation-induced graft polymerizations under emulsion conditions based on realistic information for monomers calculated by the state-of-the-art semiempirical method. More information can be found in the Research Article by Kiho Matsubara, Kei Takahashi, Ryohei Kakuchi, and co-workers.

3.
Chempluschem ; 89(4): e202300480, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37906113

RESUMO

In this article, a deep insight into emulsion radiation-induced graft polymerization (RIGP) was obtained by computing explicit solvation free energies, conformational entropy, monomer radius and dipole moments with the state-of-the-art Conformer-Rotamer Ensemble Sampling Tool (CREST) package primarily at semiempirical GFN-xTB level. By leveraging the robustness of the CREST package, above parameters provided dynamic nature of methacrylate monomers with the consideration of realistic emulsion conditions. With the chemical and physical importance of the above results, CREST-determined explanatory variables sufficiently led to the building of the prediction models for the RIGP of methacrylate monomers. The machine learning model building resulted in effective reactivity predictions and unveiled important factors for the radiation-induced graft polymerization in a chemically interpretable fashion.

4.
Polymers (Basel) ; 13(7)2021 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-33916430

RESUMO

A chelating fabric was prepared by graft polymerization of glycidyl methacrylate (GMA) onto a nonwoven fabric, followed by attachment reaction of N-methyl-D-glucamine (NMDG) using an organic solvent-free process. The graft polymerization was performed by immersing the gamma-ray pre-irradiated fabric into the GMA emulsion, while the attachment reaction was carried out by immersing the grafted fabric in the NMDG aqueous solution. The chelating capacity of the chelating fabric prepared by reaction in the NMDG aqueous solution without any additives reached 1.74 mmol/g, which further increased to above 2.0 mmol/g when surfactant and acid catalyst were added in the solution. The boron chelation of the chelating fabric was evaluated in a batch mode. Fourier transform infrared spectrophotometer (FTIR) was used to characterize the fabrics. The chelating fabric can quickly chelate boron from water to form a boron ester, and a high boron chelating ability close to 18.3 mg/g was achieved in the concentrated boron solution. The chelated boron can be eluted completely by HCl solution. The regeneration and stability of the chelating fabric were tested by 10 cycles of the chelation-elution operations. Considering the organic solvent-free preparation process and the high boron chelating performance, the chelating fabric is promising for the boron removal from water.

5.
Polymers (Basel) ; 12(11)2020 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-33187185

RESUMO

A nonwoven fabric adsorbent loaded with 2-ethylhexyl hydrogen-2-ethylhexylphosphonate (EHEP) was developed for the separation and recovery of dysprosium (Dy) and neodymium (Nd) from an aqueous solution. The adsorbent was prepared by the radiation-induced graft polymerization of a methacrylate monomer with a long alkyl chain onto a nonwoven fabric and the subsequent loading of EHEP by hydrophobic interaction and chain entanglement between the alkyl chains. The adsorbent was evaluated by batch and column tests with a Dy (III) and Nd (III) aqueous solution. In the batch tests, the adsorbent showed high Dy (III) adsorptivity close to 25.0 mg/g but low Nd (III) adsorptivity below 1.0 mg/g, indicating that the adsorbent had high selective adsorption. In particular, the octadecyl methacrylate (OMA)-adsorbent showed adsorption stability in repeated tests. In the column tests, the OMA-adsorbent was also stable and showed high Dy (III) adsorptivity and high selectivity in repeated adsorption-elution circle tests. This result suggested that the OMA-adsorbent may be a promising adsorbent for the separation and recovery of Dy (III) and Nd (III) ions.

6.
Sci Rep ; 10(1): 16155, 2020 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-33060609

RESUMO

Visualizing the dynamics of cesium (Cs) is desirable to understand the impact of radiocesium when accidentally ingested or inhaled by humans. However, visualization of radiocesium in vivo is currently limited to plants. Herein, we describe a method for the production and purification of 127Cs and its use in visualizing Cs dynamics in a living animal. The positron-emitting nuclide 127Cs was produced using the 127I (α, 4n) 127Cs reaction, which was induced by irradiation of sodium iodide with a 4He2+ beam from a cyclotron. We excluded sodium ions by using a material that specifically adsorbs Cs as a purification column and successfully eluted 127Cs by flowing a solution of ammonium sulfate into the column. We injected the purified 127Cs tracer solution into living rats and the dynamics of Cs were visualized using positron emission tomography; the distributional images showed the same tendency as the results of previous studies using disruptive methods. Thus, this method is useful for the non-invasive investigation of radiocesium in a living animal.


Assuntos
Radioisótopos de Césio/análise , Radioisótopos de Césio/farmacocinética , Elétrons , Tomografia por Emissão de Pósitrons/métodos , Monitoramento de Radiação/métodos , Imagem Corporal Total/métodos , Animais , Radioisótopos de Césio/isolamento & purificação , Masculino , Ratos , Ratos Wistar , Distribuição Tecidual
7.
ACS Omega ; 5(6): 2947-2956, 2020 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-32095717

RESUMO

A fibrous grafted metal adsorbent with a piperazinyl-dithiocarbamate (PZ-DTC) group was synthesized by radiation-induced emulsion grafting of glycidyl methacrylate onto a polyethylene-coated polypropylene nonwoven fabric (PE/PP-NF) and subsequent three-step chemical modifications consisting of amination with N-(tert-butoxycarbonyl)piperazine (N-Boc-piperazine, NBPZ), deprotection of the Boc group with HCl, and dithiocarbamation with carbon disulfide (CS2). By using the NBPZ reagent in the amination step, the self-cross-linking of piperazine (PZ) could be completely suppressed, unlike using the PZ reagent. Consequently, the PZ-DTC group density of the fibrous grafted metal adsorbent synthesized through NBPZ attained 2.122 mmol-PZ-DTC/g-adsorbent, which was approximately 6 times higher than that of the metal adsorbent synthesized through PZ. The fibrous grafted metal adsorbent with the PZ-DTC group selectively adsorbed heavy metal ions over light metal ions. Furthermore, it exhibited high adsorption capacity, particularly for Cu2+. The Cu2+ adsorption capacity was determined to be 1.903 mmol-Cu2+/g-adsorbent by a batchwise adsorption test using a single-metal-ion aqueous solution at pH 6. The order of metal ion selectivity of the fibrous grafted metal adsorbent with the PZ-DTC group was Na+ < Mg2+, Ca2+, Co2+, Cd2+ < Pb2+ ≪ Cu2+, and Co2+ ≈ Ni2+ < Zn2+ ≪ Cu2+. In addition, the fibrous grafted metal adsorbent with the PZ-DTC group did not lose its metal adsorption function even under highly alkaline conditions (pH 15). It could recover Cu2+ efficiently and selectively from a high-concentration Na+ aqueous solution at this pH. The Cu2+ adsorption capacity of the fibrous grafted metal adsorbent with the PZ-DTC group was 0.754 mmol-Cu2+/g-adsorbent under a highly alkaline condition, a 10 M NaOH aqueous solution at pH 15. This value was approximately 2.4 times higher than that of the other grafted adsorbent with an amine-type functional group.

8.
Polymers (Basel) ; 11(12)2019 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-31810361

RESUMO

This paper investigates the selectivity of GMA-based-non-woven fabrics adsorbent towards copper ion (Cu) functionalized with several aliphatic amines. The aliphatic amines used in this study were ethylenediamine (EDA), diethylenetriamine (DETA), triethylenetetramine (TETA), and tetraethylenepentamine (TEPA). The non-woven polyethylene/polypropylene fabrics (NWF) were grafted with glycidyl methacrylate (GMA) via pre-radiation grafting technique, followed by chemical functionalization with the aliphatic amine. To prepare the ion recognition polymer (IRP), the functionalized amine GMA-grafted-NWF sample was subjected to radiation crosslinking process along with the crosslinking agent, divinylbenzene (DVB), in the presence of Cu ion as a template in the matrix of the adsorbent. Functionalization with different aliphatic amine was carried out at different amine concentrations, grafting yield, reaction temperature, and reaction time to study the effect of different aliphatic amine onto amine density yield. At a concentration of 50% of amine and 50% of isopropanol, EDA, DETA, TETA, and TEPA had attained amine density around 5.12, 4.06, 3.04, and 2.56 mmol/g-ad, respectively. The amine density yield decreases further as the aliphatic amine chain grows longer. The experimental condition for amine functionalization process was fixed at 70% amine, 30% isopropanol, 60 °C for grafting temperature, and 2 h of grafting time for attaining 100% of grafting yield (Dg). The prepared adsorbents were characterized comprehensively in terms of structural and morphology with multiple analytical tools. An adsorptive removal and selectivity of Cu ion by the prepared adsorbent was investigated in a binary metal ion system. The IRP samples with a functional precursor of EDA, the smallest aliphatic amine had given the higher adsorption capacity and selectivity towards Cu ion. The selectivity of IRP samples reduces as the aliphatic amine chain grows longer, EDA to TEPA. However, IRP samples still exhibited remarkably higher selectivity in comparison to the amine immobilized GMA-g-NWF at similar adsorption experimental conditions. This observation indicates that IRP samples possess higher selectivity after incorporation of the ion recognition imprint technique via the radiation crosslinking process.

9.
Polymers (Basel) ; 11(8)2019 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-31434303

RESUMO

A simplified radiation-induced emulsion graft polymerization (SREG) method is proposed. This method involves a convenient and easy degassing process of a monomer solution using a commercially available sealed glass jar. A loaded weight on the lid of the jar was used to control the jar's internal pressure as the degassing of the monomer solution took place using a vacuum pump. The degassing method was highly reproducible, resulting from no bumping of the monomer solution. The initial grafting velocity was proportional to the absorbed doses of pre-irradiation between 5 and 20 kGy. This result indicates that dissolved oxygen was sufficiently eliminated from the monomer solution at such a level where the remaining oxygen had little effect on the grafting reaction at a dose of 5 kGy. The method was then applied to the fabrication of a heavy metal adsorbent that possessed a sufficient adsorption capacity of Co(II) ions. The SREG method is applicable to the fabrication of a wide variety of functional graft polymers because high-dose-rate gamma-ray radiation and expensive experimental equipment are not necessary.

10.
Polymers (Basel) ; 11(8)2019 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-31409049

RESUMO

In this manuscript, we present the successful attachment of crown ether moieties onto fluoropolymer surfaces, via the combination of radiation-induced graft polymerization and a subsequent surface Kabachnik-Fields three-component reaction. The obtained crown ether-tethered fluoropolymer films exhibited an ammonium cation capturing ability, owing to the host-guest interactions (i.e., hydrogen bonding) between the surface-anchored crown ethers and the guest ammonium cations.

11.
Polymers (Basel) ; 11(7)2019 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-31261766

RESUMO

To determine the molecular weight of graft chains in grafted films, the polystyrene graft chains of PVDF-g-St films synthesized by a pre-irradiation graft method are cleaved and separated by boiling xylene extraction. The analysis of the extracted material and the residual films by FTIR, nuclear magnetic resonance (NMR), and gel permeation chromatography (GPC) analyses indicates that most graft chains are removed from the PVDF-g-St films within 72 h of extraction time. Furthermore, the molecular weight of the residual films decreases quickly within 8 h of extraction and then remains virtually unchanged up to 72 h after extraction time. The degradation is due to the cleavage of graft bonds, which is mainly driven by the thermal degradation and the swelling of graft chains in solution. This allows determination of the molecular weight of graft chains by GPC analysis of the extracted material. The results indicate that the PVDF-g-St prepared in this study has the structure where one or two graft chains hang from each PVDF backbone.

12.
Anal Sci ; 34(12): 1357-1364, 2018 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-30122735

RESUMO

In an effort to elucidate the deposition pathway of Pd in river sediments, we analyzed the amount of Pd in the river water and sediments of the Yukawa and Yazawa rivers, as well as in the sediments of the Shinaki dam-lake of the Kusatsu hot-spring area, which is located northwest in Gunma Prefecture of Japan. The crystal structures and elemental compositions of the river sediment samples differed significantly before and after neutralization. This was attributed to the lime input, which also affected the Pd abundance ratio obtained by the sequential extraction procedure. Additionally, the low leachability of Pd in the sediment suggested possible difficulties in its recovery. Considering the analysis of the Pd variation in the environments, it was concluded that the Pd content in the sediment of the Shinaki dam-lake was mainly supplied by the Yukawa river water inflowing the surrounding tributary rivers and hot-spring waters before neutralization, rather than the lime input.

13.
Polymers (Basel) ; 10(7)2018 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-30960669

RESUMO

To remove chromium from wastewater effectively, two types of nitrogen-containing fabric adsorbents, having amidoxime ligand groups and quaternary ammonium anion exchange groups, respectively, were prepared by radiation grafting. In brief, the amidoxime adsorbent is obtained by grafting of acrylonitrile (AN)/methacrylic acid (MAA) onto a nonwoven fabric and subsequent amidoximation with hydroxylamine, while the ammonium adsorbent is obtained by grafting of chloromethylstyrene (CMS) followed by quaternization with trimethylamine. The AN/MAA-grafting reaches a high degree of grafting more than 100%, and the resulting amidoxime adsorbent reaches a high amidoxime density of 4.53 mmol/g. On the other hand, the CMS-grafting reaches a much higher degree of grafting above 200%, and the resulting ammonium adsorbent reaches a high ammonium density of 3.51 mmol/g. FTIR/ATR and TGA/DTA are used for the characterization of the grafted fabrics as well as the relevant fabric adsorbents. Furthermore, the chromium removal of the prepared fabric adsorbent is tested in both batch and column modes. It has been confirmed that the chromium removal was largely dependent on the pH of the solution. At pH 5.0, the amidoxime adsorbent shows a high Cr(III) adsorption capacity of 31.68 mg/g, while the ammonium adsorbent shows a much higher Cr(VI) adsorption capacity of 130.65 mg/g.

14.
Polymers (Basel) ; 9(8)2017 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-30970983

RESUMO

Reversible addition-fragmentation chain transfer (RAFT) agent was added into a simultaneous radiation grafting system and its effects on graft polymerization and homopolymerization were investigated. Chloromethylstyrene (CMS) was graft polymerized onto ethylene-tetrafluoroethylene copolymer (ETFE) films under γ-ray sources via simultaneous irradiation. The non-grafted poly(CMS) in the grafted films were extracted by xylene at 120 °C. The poly(CMS) was characterized by NMR and GPC instruments. Addition of the RAFT agent suppressed both graft polymerization and homopolymerization. However, under a high concentration of RAFT agent, the homopolymerization in the monomer solution could occur through a typical RAFT polymerization while polymerization in the ETFE films proceeded via RAFT and conventional radical polymerization, resulting in poly(CMS) in the ETFE films with molecular weight dispersity higher than 1.0 but lower than that without RAFT agent. Furthermore, it was found that the molecular weight of the poly(CMS) in the ETFE films was several times higher than that of the poly(CMS) in the monomer solution.

15.
ACS Appl Mater Interfaces ; 5(17): 8761-5, 2013 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-23931764

RESUMO

Gold nanostructured microtubes (AuNMTs) are prepared using a tertiary amine group-functionalized polyethylene (PE)-coated polypropylene (PP) nonwoven fabric as a ligand, a reductant, and a template, which takes advantage of the different radiation effects of PE and PP. The Au(III) ions are absorbed and reduced only in the PE layer to form the aggregation of gold nanoparticles; thus, AuNMTs are obtained after the calcination.

16.
Water Res ; 45(15): 4592-600, 2011 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-21724222

RESUMO

This study was investigated for the trace phosphate removal at high feed flow rate by ligand exchange fibrous adsorbent. The zirconium(IV) loaded bifunctional fibers containing both phosphonate and sulfonate were used as a highly selective ligand exchange adsorbent for trace phosphate removal from water. The precursory fiber of the bifunctional fibers was co-grafted by polymerization of chloromethylstyrene and styrene onto polyethylene coated polypropylene fiber and then bifunctional fibers were prepared by Arbusov reaction followed by phosphorylation and sulfonation. Phosphate adsorption experimental work was carried out in column approach. Phosphate adsorption increased with decreasing the pH of feed solutions. An increase in the feeds flow rate brings a decrease in both breakthrough capacity and total adsorption. The effect of competing anions on phosphate adsorption systems was investigated. The experimental findings reveal that the phosphate adsorption was not affected in the presence of competing anions such as chloride and sulfate despite the enhancement of the breakthrough points and total adsorption. Due to high selectivity to phosphate species, low concentration level of phosphate (0.22 mg/L) was removed at high feed flow rate of 450 h(-1) in space velocity. The adsorbed phosphate on the Zr(IV) loaded fibrous column was quantitatively eluted with 0.1 M NaOH solution and then the column was regenerated by 0.5M H2SO4 for the next adsorption operation. During many adsorption-elution-regeneration cycles, no measurable Zr(IV) was found in the column effluents. Therefore, the Zr(IV) loaded bifunctional fibrous adsorbent is to be an effective means to treat wastewater to prevent eutrophication in the receiving water bodies for long time without any deterioration.


Assuntos
Fosfatos/isolamento & purificação , Poluentes Químicos da Água/isolamento & purificação , Purificação da Água/métodos , Água/química , Zircônio/química , Adsorção , Concentração de Íons de Hidrogênio , Cinética
17.
J Hazard Mater ; 188(1-3): 164-71, 2011 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-21320748

RESUMO

This work investigated that weak-base anion exchange fibers named FVA-c and FVA-f were selectively and rapidly taken up phosphate from water. The chemical structure of both FVA-c and FVA-f was the same; i.e., poly(vinylamine) chains grafted onto polyethylene coated polypropylene fibers. Batch study using FVA-c clarified that this preferred phosphate to chloride, nitrate and sulfate in neutral pH region and an equilibrium capacity of FVA-c for phosphate was from 2.45 to 6.87 mmol/g. Column study using FVA-f made it clear that breakthrough capacities of FVA-f were not strongly affected by flow rates from 150 to 2000 h(-1) as well as phosphate feed concentration from 0.072 to 1.6mM. Under these conditions, breakthrough capacities were from 0.84 to 1.43 mmol/g indicating high kinetic performances. Trace concentration of phosphate was also removed from feeds containing 0.021 and 0.035 mM of phosphate at high feed flow rate of 2500 h(-1), breakthrough capacities were 0.676 and 0.741 mmol/g, respectively. The column study also clarified that chloride and sulfate did not strongly interfere with phosphate uptake even in their presence of equimolar and fivefold molar levels. Adsorbed phosphate on FVA-f was quantitatively eluted with 1M HCl acid and regenerated into hydrochloride form simultaneously for next phosphate adsorption operation. Therefore, FVA-f is able to use long time even under rigorous chemical treatment of multiple regeneration/reuse cycles without any noticeable deterioration.


Assuntos
Troca Iônica , Fosfatos/isolamento & purificação , Poluentes Químicos da Água/isolamento & purificação , Adsorção , Resinas de Troca Aniônica/química , Polipropilenos , Purificação da Água/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...