Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Biosens Bioelectron ; 82: 14-9, 2016 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-27031186

RESUMO

Bacteriophage (phage) amplification is an attractive method for the detection of bacteria due to a narrow phage-host specificity, short amplification times, and the phages' ability to differentiate between viable and non-viable bacterial cells. The next step in phage-based bacteria detection is leveraging bioengineered phages to create low-cost, rapid, and easy-to-use detection platforms such as lateral flow assays. Our work establishes the proof-of-concept for the use of bioengineered T7 phage strains to increase the sensitivity of phage amplification-based lateral flow assays. We have demonstrated a greater than 10-fold increase in sensitivity using a phage-based protein reporter, maltose-binding protein, over the detection of replicated T7 phage viron itself, and a greater then 100-fold increase in sensitivity using a phage-based enzymatic reporter, alkaline phosphatase. This increase in sensitivity enabled us to detect 10(3)CFU/mL of Escherichia coli in broth after 7h, and by adding a filter concentration step, the ability to detect a regulatory relevant E. coli concentration of 100CFU/100mL in inoculated river water after 9h, where the current standard requires days for results. The combination of the paper fluidic format with phage-based detection provides a platform for the development of novel diagnostics that are sensitive, rapid, and easy to use.


Assuntos
Bacteriófago T7/genética , Bioengenharia/métodos , Técnicas Biossensoriais/métodos , Monitoramento Ambiental/métodos , Escherichia coli/isolamento & purificação , Escherichia coli/virologia , Rios/microbiologia , Fosfatase Alcalina/genética , Proteínas de Bactérias/genética , Escherichia coli/genética , Engenharia Genética/métodos , Limite de Detecção , Proteínas Ligantes de Maltose/genética , Regulação para Cima
2.
Analyst ; 140(22): 7629-36, 2015 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-26421320

RESUMO

Genetic engineering of bacteriophages allows for the development of rapid, highly specific, and easily manufactured probes for the detection of bacterial pathogens. A challenge for novel probes is the ease of their adoption in real world laboratories. We have engineered the bacteriophage T7, which targets Escherichia coli, to carry the alkaline phosphatase gene, phoA. This inclusion results in phoA overexpression following phage infection of E. coli. Alkaline phosphatase is commonly used in a wide range of diagnostics, and thus a signal produced by our phage-based probe could be detected using common laboratory equipment. Our work demonstrates the successful: (i) modification of T7 phage to carry phoA; (ii) overexpression of alkaline phosphatase in E. coli; and (iii) detection of this T7-induced alkaline phosphatase activity using commercially available colorimetric and chemilumiscent methods. Furthermore, we demonstrate the application of our phage-based probe to rapidly detect low levels of bacteria and discern the antibiotic resistance of E. coli isolates. Using our bioengineered phage-based probe we were able to detect 10(3) CFU per mL of E. coli in 6 hours using a chemiluminescent substrate and 10(4) CFU per mL within 7.5 hours using a colorimetric substrate. We also show the application of this phage-based probe for antibiotic resistance testing. We were able to determine whether an E. coli isolate was resistant to ampicillin within 4.5 hours using chemiluminescent substrate and within 6 hours using a colorimetric substrate. This phage-based scheme could be readily adopted in labs without significant capital investments and can be translated to other phage-bacteria pairs for further detection.


Assuntos
Fosfatase Alcalina/genética , Bacteriófago T7/enzimologia , Bacteriófago T7/genética , Escherichia coli/isolamento & purificação , Escherichia coli/virologia , Fosfatase Alcalina/metabolismo , Técnicas Biossensoriais/métodos , Ensaios Enzimáticos/métodos , Escherichia coli/genética , Escherichia coli/metabolismo , Infecções por Escherichia coli/diagnóstico , Infecções por Escherichia coli/microbiologia , Engenharia Genética/métodos , Humanos , Regulação para Cima
3.
Proc Natl Acad Sci U S A ; 105(48): 18964-9, 2008 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-19033196

RESUMO

Following birth, the breast-fed infant gastrointestinal tract is rapidly colonized by a microbial consortium often dominated by bifidobacteria. Accordingly, the complete genome sequence of Bifidobacterium longum subsp. infantis ATCC15697 reflects a competitive nutrient-utilization strategy targeting milk-borne molecules which lack a nutritive value to the neonate. Several chromosomal loci reflect potential adaptation to the infant host including a 43 kbp cluster encoding catabolic genes, extracellular solute binding proteins and permeases predicted to be active on milk oligosaccharides. An examination of in vivo metabolism has detected the hallmarks of milk oligosaccharide utilization via the central fermentative pathway using metabolomic and proteomic approaches. Finally, conservation of gene clusters in multiple isolates corroborates the genomic mechanism underlying milk utilization for this infant-associated phylotype.


Assuntos
Bifidobacterium/genética , Trato Gastrointestinal/microbiologia , Leite Humano , Proteínas de Bactérias/classificação , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Bifidobacterium/metabolismo , Aleitamento Materno , Feminino , Genoma Bacteriano , Humanos , Recém-Nascido , Leite Humano/química , Leite Humano/metabolismo , Dados de Sequência Molecular , Família Multigênica , Oligossacarídeos/química , Oligossacarídeos/metabolismo , Filogenia , Gravidez
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA