Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Exp Biol ; 222(Pt 16)2019 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-31444280

RESUMO

The horse has evolved to gallop economically at high speed. Limb force increases with speed but direct measures of limb ground reaction forces (GRFs) at gallop are sparse. This study reports GRFs for multiple limbs, using force plates, across seven Thoroughbred racehorses during ridden galloping. The results show peak vertical GRF values of 13.6 N kg-1 (non-lead hindlimb), 12.3 N kg-1 (lead hindlimb), 14.0 N kg-1 (non-lead forelimb) and 13.6 N kg-1 (lead forelimb) at 11.4 m s-1 and recorded values are consistent with those predicted from duty factor. The distribution of body weight between the forelimbs and hindlimbs is approximated to 50:50, and is variable with speed, unlike the 60:40 commonly stated for cursorial quadrupeds in the literature. An even distribution of load on all limbs may help minimise accumulation of fatigue and assist in injury avoidance. Cranio-caudal force data concur with the observation that horses apply a net accelerative impulse with the hindlimbs and a net decelerative impulse with the forelimbs. Capturing GRFs enhances our knowledge on the mechanics of galloping in fast-moving species and provides insight into injury risk and factors limiting athletic performance.


Assuntos
Cavalos/fisiologia , Locomoção , Aceleração , Animais , Fenômenos Biomecânicos , Suporte de Carga
2.
Elife ; 62017 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-28910262

RESUMO

Quadrupeds, like most bipeds, tend to walk with an even left/right footfall timing. However, the phasing between hind and forelimbs shows considerable variation. Here, we account for this variation by modeling and explaining the influence of hind-fore limb phasing on mechanical work requirements. These mechanics account for the different strategies used by: (1) slow animals (a group including crocodile, tortoise, hippopotamus and some babies); (2) normal medium to large mammals; and (3) (with an appropriate minus sign) sloths undertaking suspended locomotion across a range of speeds. While the unusual hind-fore phasing of primates does not match global work minimizing predictions, it does approach an only slightly more costly local minimum. Phases predicted to be particularly costly have not been reported in nature.


Assuntos
Fenômenos Biomecânicos , Metabolismo Energético , Locomoção , Animais , Humanos , Modelos Teóricos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...