Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Hazard Mater ; 465: 133271, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38141313

RESUMO

The extraordinary accumulation of cyanide ions within biological cells is a severe health risk. Detecting and tracking toxic cyanide ions within these cells by simple and ultrasensitive methodologies are of immense curiosity. Here, continuous tracking of ultimate levels of CN--ions in HeLa cells was reported employing biocompatible branching molecular architectures (BMAs). These BMAs were engineered by decorating colorant-laden dendritic branch within and around the molecular building hollows of the geode-shelled nanorods of organic-inorganic Al-frameworks. Batch-contact methods were utilized to assess the potential of hollow-nest architecture for inhibition/evaluation of toxicant CN--ions within HeLa cells. The nanorod BMAs revealed significant potential capabilities in monitoring and tracking of CN- ions (88 parts per trillion) in biological trials within seconds. These results demonstrated sufficient evidence for the compatibility of BMAs during HeLa cell exposure. Under specific conditions, the BMAs were utilized for in-vitro fluorescence tracking/sensing of CN- in HeLa cells. The cliff swallow nest with massive mouths may have the potential to reduce the health hazards associated with toxicant exposure in biological cells.


Assuntos
Estruturas Metalorgânicas , Humanos , Células HeLa , Íons , Cianetos , Substâncias Perigosas
2.
Langmuir ; 39(6): 2333-2346, 2023 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-36719844

RESUMO

Antifouling (AF) nanocoatings made of polydimethylsiloxane (PDMS) are more cost-efficient and eco-friendly substitutes for the already outlawed tributyltin-based coatings. Here, a catalytic hydrosilation approach was used to construct a design inspired by composite mosquito eyes from non-toxic PDMS nanocomposites filled with graphene oxide (GO) nanosheets decorated with magnetite nanospheres (GO-Fe3O4 nanospheres). Various GO-Fe3O4 hybrid nanofillers were dispersed into the PDMS resin through a solution casting method to evaluate the structure-property relationship. A simple coprecipitation procedure was used to fabricate magnetite nanospheres with an average diameter of 30-50 nm, a single crystal structure, and a predominant (311) lattice plane. The uniform bioinspired superhydrophobic PDMS/GO-Fe3O4 nanocomposite surface produced had a micro-/nano-roughness, low surface-free energy (SFE), and high fouling release (FR) efficiency. It exhibited several advantages including simplicity, ease of large-area fabrication, and a simultaneous offering of dual micro-/nano-scale structures simply via a one-step solution casting process for a wide variety of materials. The superhydrophobicity, SFE, and rough topology have been studied as surface properties of the unfilled silicone and the bioinspired PDMS/GO-Fe3O4 nanocomposites. The coatings' physical, mechanical, and anticorrosive features were also taken into account. Several microorganisms were employed to examine the fouling resistance of the coated specimens for 1 month. Good dispersion of GO-Fe3O4 hybrid fillers in the PDMS coating until 1 wt % achieved the highest water contact angle (158° ± 2°), the lowest SFE (12.06 mN/m), micro-/nano-roughness, and improved bulk mechanical and anticorrosion properties. The well-distributed PDMS/GO-Fe3O4 (1 wt % nanofillers) bioinspired nanocoating showed the least biodegradability against all the tested microorganisms [Kocuria rhizophila (2.047%), Pseudomonas aeruginosa (1.961%), and Candida albicans (1.924%)]. We successfully developed non-toxic, low-cost, and economical nanostructured superhydrophobic FR composite coatings for long-term ship hull coatings. This study may expand the applications of bio-inspired functional materials because for multiple AF, durability and hydrophobicity are both important features in several industrial applications.

3.
Anal Chim Acta ; 1192: 339380, 2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-35057967

RESUMO

To date, the production and development of portable analytical devices for environmental and healthcare applications are rapidly growing. Herein, a portable electrochemical sensor for monitoring of noradrenaline (NA) secreted from living cells using mesoporous carbon-based materials was fabricated. The modification of the interdigitated electrode array (IDA) by nitrogen-doped mesoporous carbon spheres (N-doped MCS) and nitrogen-doped carbon hollow trunk-like structure (N-doped CHT) was used to fabricate the NA sensor. The N-doped CHT surface shows multiple holes distributed with micrometer-sized open holes (1-2 µm) and nanometer-sized thin walls (∼98 nm). The N-doped CHT surface heterogeneity of wrinkled and twisted hollow trunk structures improve the diffusion pathway and the NA molecules loading. The N-doped CHT/IDA showed a highly selective assay for monitoring of NA with high sensitivity (1770 µA/µM × cm2), a low detection limit (0.005 µM), and a wide linear range (0.01-0.3 µM). The N-doped CHT/IDA monitored the NA secreted from PC12 cells under various concentrations of simulation agents (KCl). The designed N-doped CHT/IDA provides a portable NA-sensor assay with facile signaling, good stability, high biocompatibility, in-vitro assay compatibility, and good reproducibility. Therefore, the designed sensor can be used as a portable sensor for NA detection in live cells and can be matched with portable smartphones after further developments.


Assuntos
Carbono , Nitrogênio , Animais , Eletrodos , Norepinefrina , Ratos , Reprodutibilidade dos Testes
4.
Comput Methods Biomech Biomed Engin ; 25(13): 1531-1543, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34986079

RESUMO

The hydrothermal features of unsteady, incompressible, and laminar hybrid nanofluid motion through a porous capillary are analytically studied in the magnetic field presence. The hybrid nanofluid (GO + ZnO + Blood) is synthesized by blending nanomaterials of graphene oxide and zinc oxide with blood acting as the host fluid. The mathematical model of the flow comprises of a coupled nonlinear set of partial differential equations (PDEs) satisfying appropriate boundary conditions. These equations are reduced to ordinary differential equations (ODEs) by using similarity transformations and then solved with homotopy analysis method (HAM). The impacts of various pertinent physical parameters over the hybrid nanofluid state functions are examined by displaying 2 D graphs. It has been observed that the fluid velocity mitigates with the varying strength of M, A0, N0, and N1. The enhancing buoyancy parameter ϵ augments the fluid velocity. The increasing Prandtl number causes to reduce, while the enhancing A0, B, and N2 augment the hybrid nanofluid temperature. The fluid concentration mitigates with the higher Schmidt number values and A0, and augments with the increasing Soret number strength. The augmenting magnetic field strength causes to enhance the fluid friction, whereas the convective heat transfer increases with the Prandtl number rising values. The rising Sherwood number drops the mass transfer rate of the fluid. The achieved results are validated due to the agreement with the published results. The results of this computation will find applications in biomedicine, nanotechnology, and fluid dynamics.


Assuntos
Óxido de Zinco , Hidrodinâmica , Modelos Teóricos , Nanotecnologia/métodos , Porosidade
5.
Colloids Surf B Biointerfaces ; 210: 112228, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34839049

RESUMO

Follow up of neuronal disorders, such as Alzheimer's and Parkinson's diseases using simple, sensitive, and selective assays is urgently needed in clinical and research investigation. Here, we designed a sensitive and selective enzymeless electrochemical acetylcholine sensor that can be used in human fluid samples. The designed electrode consisted of a micro spherical construction of Cu-metal decorated by a thin layer of carbon (CuMS@C). A simple and one-pot synthesis approach was used for Cu-metal controller formation with a spherical like structures. The spherical like structure was formed with rough outer surface texture, circular build up, homogeneous formation, micrometric spheres size (0.5 -1 µm), and internal hollow structure. The formation of a thin layer of carbon materials on the surface of CuMS sustained the catalytic activity of Cu atoms and enriched negatively charge of the surface. CuMS@C acted as a highly active mediator surface that consisted of Cu metal as a highly active catalyst and carbons as protecting, charge transport, and attractive surface. Therefore, the CuMS@C surface morphology and composition played a key role in various aspects such as facilitated ACh diffusion/loading, increased the interface surface area, and enhanced the catalytic activity. The CuMS@C acted as an electroactive catalyst for ACh electrooxidation and current production, due to the losing of two electrons. The fabricated CuMS@C could be a highly sensitive and selective enzymeless sensor for detecting ACh with a detection limit of 0.1 µM and a wide linear range of 0.01 - 0.8 mM. The designed ACh sensor assay based on CuMS@C exhibited fast sensing property as well as sensitivity, selectivity, stability, and reusability for detecting ACh in human serum samples. This work presents the design of a highly active electrode surface for direct detection of ACh and further clinical investigation of ACh levels.


Assuntos
Técnicas Biossensoriais , Cobre , Acetilcolina , Carbono , Técnicas Eletroquímicas , Eletrodos , Humanos , Limite de Detecção , Microesferas
6.
Soft comput ; : 1-12, 2021 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-34812247

RESUMO

In the current pandemic, smart technologies such as cognitive computing, artificial intelligence, pattern recognition, chatbot, wearables, and blockchain can sufficiently support the collection, analysis, and processing of medical data for decision making. Particularly, to aid medical professionals in the disease diagnosis process, cognitive computing is helpful by processing massive quantities of data rapidly and generating customized smart recommendations. On the other hand, the present world is facing a pandemic of COVID-19 and an earlier detection process is essential to reduce the mortality rate. Deep learning (DL) models are useful in assisting radiologists to investigate the large quantity of chest X-ray images. However, they require a large amount of training data and it needs to be centralized for processing. Therefore, federated learning (FL) concept can be used to generate a shared model with no use of local data for DL-based COVID-19 detection. In this view, this paper presents a federated deep learning-based COVID-19 (FDL-COVID) detection model on an IoT-enabled edge computing environment. Primarily, the IoT devices capture the patient data, and then the DL model is designed using the SqueezeNet model. The IoT devices upload the encrypted variables into the cloud server which then performs FL on major variables using the SqueezeNet model to produce a global cloud model. Moreover, the glowworm swarm optimization algorithm is utilized to optimally tune the hyperparameters involved in the SqueezeNet architecture. A wide range of experiments were conducted on benchmark CXR dataset, and the outcomes are assessed with respect to different measures . The experimental outcomes pointed out the enhanced performance of the FDL-COVID technique over the other methods.

7.
Sci Rep ; 11(1): 19604, 2021 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-34599255

RESUMO

Involvement of hybrid nanoparticles a vital role to improve the efficiency of thermal systems. This report covers the utilization of different nanoparticles mixed in Carreau Yasuda material for the improvement of thermal performance. The configuration of flow situation is considered over a rotating porous cone by considering the Hall and Ion slip forces. Transport of momentum is considered to be in a rotating cone under generalized ohm's law and heat transfer is presented by considering viscous dissipation, Joule heating and heat generation. Rheology of considered model is derived by engaging the theory proposed by Prandtl. Modeled complex PDEs are reduced into ODEs under similarity transformation. To study the physics behind this phenomenon, solution is essential. Here, FEM (Finite Element Method) is adopted to compute the solution. Furthermore, the grid independent study is reported with several graphs and tables which are prepared to note the influence of involved parameters on thermal and velocity fields. It is worth mentioning that heat transport is controlled via higher radiation parameter and it upsurges for Eckert number. Moreover, Hall and ion slip parameters are considered significant parameters to produce the enhancement in motion of fluid particles but speed of nano and hybrid nanoparticles becomes slow down versus large values of Forchheimer and Weissenberg numbers. Additionally, an enhancement in production of heat energy is addressed via large values of heat generation number and Eckert number while reduction in heat energy is occurred due to positive values of thermal radiation and Hall and ion slip parameters.

8.
Sci Rep ; 11(1): 17837, 2021 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-34497311

RESUMO

Stretched flows have numerous applications in different industrial, biomedical and engineering processes. Current research is conducted to examine the flow phenomenon of Prandtl fluid model over a moveable surface. The phenomenon of mass and thermal transportation is based on generalized theory of Cattaneo-Christov which considers the involvement of relaxation times. In addition to these, variable characteristics of thermal conductivity and diffusion coefficient are considered as a function of temperature. The physical problem in Cartesian coordinate system is modeled via boundary layer theory which yields a coupled system of partial differential equations. Group scaling transportation is applied to model these PDEs system. The converted equations have been approximated via optimal homotopic scheme. The efficiency and validity of used approach has been shown by computing the error analysis and establishing a comparative study. It is noted that the enhancement in magnetic parameter plays a controlling role for velocity field and it augment the concentration and temperature fields. Furthermore, increase in thermal relaxation parameter and Prandtl number maintains the fluid temperature.

9.
PLoS One ; 16(8): e0256302, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34432830

RESUMO

This report is prepared to examine the heat transport in stagnation point mixed convective hyperbolic tangent material flow past over a linear heated stretching sheet in the presence of magnetic dipole. Phenomenon of thermal transmission plays a vital role in several industrial manufacturing processes. Heat generation is along with thermal relaxation due to Cattaneo-Christov flux is engaged while modeling the energy equation. In order to improve the thermal performance, inclusion of hybrid nanoparticles is mixed in hyperbolic tangent liquid. The conservation laws are modeled in Cartesian coordinate system and simplified via boundary layer approximation. The modeled partial differential equations (PDEs) system are converted into ordinary differential equations (ODEs) system by engaging the scaling group transformation. The converted system of modeled equations has been tackled via finite element procedure (FEP). The efficiency of used scheme has been presented by establishing the grid independent survey. Moreover, accurateness of results is shown with the help of comparative study. It is worth mentioning that the inclusion of hybrid nanoparticles has significant higher impact on heat conduction as compared with nanoparticle. Moreover, hybrid nanoparticles are more efficient to conduct maximum production of heat energy as compared with the production of heat energy of nanoparticles. Hence, hybrid nanoparticles (MoS2/Ag) are observed more significant to conduct more heat energy rather than nanoparticle (Ag).


Assuntos
Modelos Teóricos , Nanopartículas/química , Fenômenos Físicos , Algoritmos , Elasticidade , Análise de Elementos Finitos , Temperatura Alta , Condutividade Térmica , Meios de Transporte , Viscosidade
10.
Micromachines (Basel) ; 12(8)2021 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-34442573

RESUMO

This report examines the heat and mass transfer in three-dimensional second grade non-Newtonian fluid in the presence of a variable magnetic field. Heat transfer is presented with the involvement of thermal relaxation time and variable thermal conductivity. The generalized theory for mass flux with variable mass diffusion coefficient is considered in the transport of species. The conservation laws are modeled in simplified form via boundary layer theory which results as a system of coupled non-linear partial differential equations. Group similarity analysis is engaged for the conversion of derived conservation laws in the form of highly non-linear ordinary differential equations. The solution is obtained vial optimal homotopy procedure (OHP). The convergence of the scheme is shown through error analysis. The obtained solution is displayed through graphs and tables for different influential parameters.

11.
Biosens Bioelectron ; 185: 113237, 2021 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-33932881

RESUMO

On-demand screening, real-time monitoring and rapid diagnosis of ubiquitous diseases, such as diabetes, at early stages are indispensable in personalised treatment. Emerging impacts of nano/microscale materials on optical and portable biosensor strips and devices have become increasingly important in the remarkable development of sensitive visualisation (i.e. visible inspection by the human eye) assays, low-cost analyses and personalised home testing of patients with diabetes. With the increasing public attention regarding the self-monitoring of diabetes, the development of visual readout, easy-to-use and wearable biosensors has gained considerable interest. Our comprehensive review bridges the practical assessment gap between optical bio-visualisation assays, disposable test strips, sensor array designs and full integration into flexible skin-based or contact lens devices with the on-site wireless signal transmission of glucose detection in physiological fluids. To date, the fully modulated integration of nano/microscale optical biosensors into wearable electronic devices, such as smartphones, is critical to prolong periods of indoor and outdoor clinical diagnostics. Focus should be given to the improvements of invasive, wireless and portable sensing technologies to improve the applicability and reliability of screen display, continuous monitoring, dynamic data visualisation, online acquisition and self and in-home healthcare management of patients with diabetes.


Assuntos
Técnicas Biossensoriais , Dispositivos Eletrônicos Vestíveis , Glucose , Humanos , Reprodutibilidade dos Testes , Smartphone
12.
Mikrochim Acta ; 188(4): 138, 2021 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-33772377

RESUMO

An electrochemical sensor-based phosphorus-doped microporous carbon spheroidal structures (P-MCSs) has been designed for selective adrenaline (ADR) signaling in human blood serum. The P-MCS electrode sensor is built with heterogeneous surface alignments including multiple porous sizes with open holes and meso-/macro-grooves, rough surface curvatures, and integral morphology with interconnected and conjugated microspheres. In addition, the P atom-doped graphitic carbon forms highly active centers, increases charge mobility on the electrode surface, creates abundant active centers with facile functionalization, and induces binding to ADR molecules. The designed P-MCS electrode exhibits ultrasensitive monitoring of ADR with a low detection limit of 0.002 µM and high sensitivity of 4330 µA µM-1 cm-2. In addition, two electrochemical techniques, namely, square wave voltammetry (SWV) and chronoamperometry (CA), were used; these techniques achieve high stability, fast response, and a wide linear range from 0.01 to 6 µM. The sensing assays based on P-MCSs provide evidence of the formation of active interfacial surface-to-ADR binding sites, high electron diffusion, and heavy target loads along with/without a plane of spheroids. Thus, P-MCSs can be used for the routine monitoring of ADR in human blood serum, providing a fast response, and requiring highly economical materials at extremely low concentrations. Electrode surface modulation based on P-doped carbon spheres (P-MCS) exhibits high electrochemical activity with fast charge transport, multi-diffusible active centers, high loading of ADR, and facile molecular/electron diffusion at its surface. The P-MCS sensitively and selectively detects the ADR in human fluids and can be used for clinical investigation of some neuronal diseases such as Alzheimer diseases.


Assuntos
Carbono/química , Técnicas Eletroquímicas/métodos , Epinefrina/sangue , Adsorção , Técnicas Biossensoriais/instrumentação , Técnicas Biossensoriais/métodos , Técnicas Eletroquímicas/instrumentação , Eletrodos , Epinefrina/química , Humanos , Limite de Detecção , Oxirredução , Fósforo/química , Porosidade , Reprodutibilidade dos Testes
13.
Mater Sci Eng C Mater Biol Appl ; 122: 111844, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33641886

RESUMO

Here, we study the effect of hierarchical and one-dimensional (1D) metal oxide nanorods (H-NRs) such as γ-Al2O3, ß-MnO2, and ZnO as microbial inhibitors on the antimicrobial efficiency in aqueous solution. These microbial inhibitors are fabricated in a diverse range of nanoscale hierarchical morphologies and geometrical shapes that have effective surface exposure, and well-defined 1D orientation. For instance, γ-Al2O3 H-NRs with 20 nm width and ˂0.5 µm length are grown dominantly in the [400] direction. The wurtzite structures of ß-MnO2 H-NRs with 30 nm width and 0.5-1 µm length are preferentially oriented in the [100] direction. Longitudinal H-NRs with a width of 40 nm and length of 1 µm are controlled with ZnO wurtzite structure and grown in [0001] direction. The antimicrobial efficiency of H-NRs was evaluated through experimental assays using a set of microorganisms (Gram-positive Staphylococcus aureus, Bacillus thuriginesis, and Bacillus subtilis) and Gram-negative (Escherichia coli and Pseudomonas aeruginosa) bacteria. Minimal inhibitory and minimum bactericidal concentrations (MIC and MBC) were determined. These 1D H-NRs exhibited antibacterial activity against all the used strains. The active surface exposure sites of H-NRs play a key role in the strong interaction with the thiol units of vital bacterial enzymes, leading to microbial inactivation. Our finding indicates that the biological effect of the H-NR surface planes on microbial inhibition is decreased in the order of [400]-γ-Al2O3 > [100]-ß-MnO2 > [0001]-ZnO geometrics. The lowest key values including MIC (1.146 and 0.250 µg/mL), MBC (1.146, 0.313 µg/mL), and MIC/MFC (0.375 and 0.375 µg/mL) are achieved for [400]-plane γ-Al2O3 surfaces when tested against Gram-positive and -negative bacteria, respectively. Among the three H-NRs, the smallest diameter size and length, the largest surface area, and the active exposure [400] direction of γ-Al2O3 H-NRs could provide the highest microbial inactivation.


Assuntos
Bactérias Gram-Negativas , Compostos de Manganês , Antibacterianos/farmacologia , Testes de Sensibilidade Microbiana , Viabilidade Microbiana , Óxidos
14.
Anal Chim Acta ; 1142: 143-156, 2021 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-33280692

RESUMO

Sensory protocols for evaluation of DNA distortion due to exposure to various harmful chemicals and environments in living cells are needed for research and clinical investigations. Here, a design of non-metal sensory (NMS) electrode was built by using boron-doped carbon spherules for detection of DNA nucleobases, namely, guanine (Gu), adenine (Ad), and thymine (Th) in living cells. The key-electrode based nanoscale NMS structures lead to voids with a facile diffusion, and strong binding events of the DNA nucleobases. Furthermore, the NMS geometric structures would significantly create electrode surfaces with numerous centrally active sites, curvature topographies, and anisotropic spherules. The NMS shows potential as sensitive protocol for DNA-nucleobases in living cells exposed to oxidative stresses. In one-step signaling assay, NMS shows high signaling transduction of Gu-, Ad-, and Th-DNA nucleobases targets with ultra-sensitive and low detection limits of 3.0, 0.36, and 0.34 nM, respectively, and a wide linear range of up to 1 µM. The NMS design and protocol show evidence of the role of surface construction features and B-atoms incorporated into the graphitic carbon network for creating abundant active sites with facile electron diffusion and heavily target loads along with within-/out-plane circular spheres. Indeed NMS, with spherule-rich interstitial surfaces can be used for sensitive and selective evaluation of damaged-DNA to various dysfunctional metabolism in the human body.


Assuntos
DNA , Timina , Eletrodos , Guanina , Humanos , Estresse Oxidativo
15.
ACS Appl Bio Mater ; 3(12): 8496-8506, 2020 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-35019619

RESUMO

A highly sensitive protocol for signaling norepinephrine (NEP) in human fluids and neuronal cell line models should be established for clinical investigation of some neuronal diseases. A metal-free electrode catalyst was designed based on a sulfur-doped carbon spheroidal surface (S-CSN) and employed as a transducing element for selective signaling of NEP in biological samples. The designed electrode of S-CSN features a spherical construct and curvature surface to form a spheroidal nanolayer with an average layer size of <2 nm. S-CSN shows surface topography of a circular surface curvature with a rugged surface texture, ridge ends, and free open spaces between interlayers. The rich-space diversity surfaces offer highly active surface with facile molecular/electron diffusion, multi-diffusive centers, and high target loading along with in-/out-of-plane circular spheres of the S-CSN surface. The active doping of S atoms onto the carbon-based electrode creates an active transducing element with many active sites, strong binding to targeted molecules, facile diffusion of charges/molecules, long-term durability, and dense reactive exposure sites for signaling NEP at ultratrace levels. S-CSN could be a sensitive and selective nanosensor for signaling NEP and establishing a sensing protocol with high stability and reproducibility. The sensory protocol based on S-CSN exhibits high sensitivity and selectivity with a low detection limit of 0.001 µM and a wide linear range of 0.01-0.8 µM. The in vitro sensory protocol for NEP secreted from living cells (neuronal cell line model) under stimulated agents possesses high sensitivity, low cytotoxicity, and high biocompatibility. These results confirm the successful establishment of NEP sensor in human blood samples and neuronal cells for clinical investigation.

16.
Nanoscale ; 9(23): 7947-7959, 2017 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-28574076

RESUMO

This work describes densely interlinked bushy "tree-like chains" characterized by neatly branched sphere dendrites (bushy sphere dendrites, BSD) with long fan-like, husk-shaped branching paths that extend longitudinally from the core axis of the {110}-exposed plane. We confirmed that the hierarchical dendrite surfaces created bowls of swirled caves along the tree-tube in the mat-like branches. These surfaces had high-index catalytic site facets associated with the formation of ridges/defects on the dominant {110}-top-cover surface. These swirled caves along the branches were completely filled with 50-100 nm poly-CN nano-sphere-fossils with orb-like appearance. Such structural features are key issues of the inherent surface reactivity of a powerful catalyst/trapper, enabling photocatalytic oxidation and trapping of extremely toxic arsenite (AsO33-) species and photo-induced recovery of arsenate (AsO43-) products from catalyst surfaces. The light-induced release of produced AsO43- from BSD indicates (i) highly controlled waste collection/management (i.e., recovery), (ii) low cost and ecofriendly photo-adsorbent, (iii) selective trapping of real sample water to produce water-free arsenite species; (iv) multiple reuse cycles of catalysts (i.e., reduced waste volume). Matrixed dendrites, covered with 3D microscopic sphere cores that capture solar-light, trap toxins, and are triggered by light, were designed. These dendrites can withstand indoor and outdoor recovery of toxins from water sources.

17.
Chem Asian J ; 12(15): 1952-1964, 2017 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-28544414

RESUMO

Because of the devastating impact of arsenic on terrestrial and aquatic organisms, the recovery, removal, disposal, and management of arsenic-contaminated water is a considerable challenge and has become an urgent necessity in the field of water treatment. This study reports the controlled fabrication of a low-cost adsorbent based on microscopic C-,N-doped NiO hollow spheres with geode shells composed of poly-CN nanospherical nodules (100 nm) that were intrinsically stacked and wrapped around the hollow spheres to form a shell with a thickness of 500-700 nm. This C-,N-doped NiO hollow-sphere adsorbent (termed CNN) with multiple diffusion routes through open pores and caves with connected open macro/meso windows over the entire surface and well-dispersed hollow-sphere particles that create vesicle traps for the capture, extraction, and separation of arsenate (AsO43- ) species from aqueous solution. The CNN structures are considered to be a potentially attractive adsorbent for AsO43- species due to 1) superior removal and trapping capacity from water samples and 2) selective trapping of AsO43- from real water samples that mainly contained chloride and nitrate anions and Fe2+ , and Mn2+ , Ca2+ , and Mg2+ cations. The structural stability of the hierarchal geodes was evident after 20 cycles without any significant decrease in the recovery efficiency of AsO43- species. To achieve low-cost adsorbents and toxic-waste management, this superior CNN AsO43- dead-end trapping and recovery system evidently enabled the continuous control of AsO43- disposal in water-scarce environments, presents a low-cost and eco-friendly adsorbent for AsO43- species, and selectively produced water-free arsenate species. These CNN geode traps show potential as excellent adsorbent candidates in environment remediation tools and human healthcare.


Assuntos
Arseniatos/isolamento & purificação , Técnicas de Química Analítica/métodos , Poluentes Químicos da Água/isolamento & purificação , Água/química , Ânions/isolamento & purificação , Arseniatos/química , Técnicas de Química Analítica/economia , Limite de Detecção , Nanopartículas/química , Porosidade , Poluentes Químicos da Água/química
18.
Chem Asian J ; 10(9): 1909-18, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26033713

RESUMO

Exposure to toxins can cause deleterious effects even at very low concentrations. We have developed an optical sensor, filter, and extractor (i.e., containerlike) in a nanoscale membrane (NSM) for the ultratrace sensing, separation, and recovery of Co(2+) ions from water. The design of the NSM is successfully controlled by dense decoration of a hydrophobic oil-hydrophilic receptor onto mesoscale tubular-structured silica nanochannels made of a hybrid anodic alumina membrane. The particular structure of the nanocontainer is ideal to control the multiple functions of the membrane, such as the optical detection/recognition, rejection/permeation, and recovery of Co(2+) species in a single step. A typical sensor, filter, and extractor assessment experiment was performed by using a benchtop contact time technique and a flow-through cell detector to allow for precise control of the optical detection and exclusive rejection of target ions and the permeation of nontarget metal ions in water. This nanocontainer membrane has great potential to meet the increasing needs of purification and separation of Co(2+) ions.

19.
ACS Appl Mater Interfaces ; 7(24): 13217-31, 2015 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-25965073

RESUMO

Using the newly developed organic-inorganic colorant membrane is an attractive approach for the optical detection, selective screening and removal, and waste management recovery of highly toxic elements, such as Hg(II) ions, from water sources. In the systematic mesosponge optical sinks (MOSs), anchoring organic colorants into 3D, well-defined cage cavities and interconnected tubular pores (10 nm) in the long microscale channels of membrane scaffolds enhances the requirements and intrinsic properties of the hierarchal membrane. This scalable design is the first to allow control of the multifunctional processes of a membrane in a one-step screening procedure, such as the detection/recognition, removal, and filtration of ultratrace Hg(II) ions, even from actual water sources (i.e., tap, underground). The selective recovery, detection, and extraction processes of Hg(II) ions in a heterogeneous mixture with inorganic cations and anions as well as organic molecules and surfactants are mainly dependent on the structure of the colorant agent, the pH conditions, competitive ion-system compositions and concentrations, and Hg-to-colorant binding events. Our result shows that the solid MOS membrane arrays can be repeatedly recycled and retain their hierarchal mesosponge sink character, avoiding fouling via the precipitation of metal salts as a result of the reuse cycle. The Hg(II) ion rejection and the permeation of nonselective elements based on the membrane filtration protocol may be key considerations in water purification and separation requirements. The selective recovery process of Hg(II) ions in actual contaminated samples collected from tap and underground water sources in Saudi Arabia indicates the practical feasibility of our designed MOS membrane arrays.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...