Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Omega ; 9(4): 4733-4743, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38313518

RESUMO

Valorization of the lignocellulosic side and waste streams is key to making industrial processes more efficient from both an economic and ecological perspective. Currently, the production of sugars from beets results in pulps in large quantities. However, there is a lack of promising opportunities for upcycling these materials despite their promising properties. Here, we investigate beet pulps from two different stages of the sugar manufacturing process as raw materials for supercapacitor electrodes. We demonstrate that these materials can be efficiently converted to activated, highly porous carbons. The carbons exhibit pore dimensions approaching the size of the desolvated K+ and SO42- ions with surface areas up to 2600 m2 g-1. These carbons were subsequently manufactured into electrodes, assembled in supercapacitors, and tested with environmentally friendly aqueous electrolytes (6 M KOH and 1 M H2SO4). Further analysis demonstrated the presence of capacitance-enhancing functionalities, and up to 193 and 177 F g-1 in H2SO4 and KOH, respectively, were achieved, which outperformed supercapacitors prepared from commercial YP80 F. Overall, our study suggests that side streams from sugar manufacturing offer a hidden potential for use in high-performance energy storage devices.

2.
Sci Rep ; 13(1): 3977, 2023 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-36894569

RESUMO

Activated carbon produced from biomass exhibits a high specific surface area due to the natural hierarchical porous structure of the precursor material. To reduce production costs of activated carbon, bio-waste materials receive more and more attention, which has led to a steep increase in the number of publications over the past decade. However, the characteristics of activated carbon are highly dependent on the properties of the precursor material used, making it difficult to draw assumptions about activation conditions for new precursor materials based on published work. Here, we introduce a Design of Experiment methodology with a Central Composite Design to better predict the properties of activated carbons from biomass. As a model precursor, we employ well-defined regenerated cellulose-based fibers which contain 25 wt.% chitosan as intrinsic dehydration catalyst and nitrogen donor. The use of the DoE methodology opens up the possibility to better identify the crucial dependencies between activation temperature and impregnation ratio on the yield, surface morphology, porosity and chemical composition of the activated carbon, independent of the used biomass. The use of DoE yields contour plots, which allows for more facile analysis on correlations between activation conditions and activated carbon properties, thus enabling its tailor-made manufacturing.

3.
Nanomaterials (Basel) ; 12(15)2022 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-35957080

RESUMO

Coffee, as one of the most traded resources, generates a vast amount of biogenic by-products. Coffee silver skins (CSS), a side stream from the roasting process, account for about 4 wt.%. Despite the abundancy of CSS, possible routes to generate added value for broad applications are limited. Herein, we present an approach to use CSS as a precursor material for supercapacitor electrodes. KOH activated carbon (AC) was produced from CSS. The resulting AC-CSS was characterized by X-ray diffraction, gas sorption analysis, scanning electron microscopy, and Raman spectroscopy. The highly porous AC-CSS exposes a specific surface area of more than 2500 m2 g-1. Electrodes formed with AC-CSS were electrochemically characterized by performing cyclic voltammetry and galvanostatic cycling. The electrodes were further assembled into a supercapacitor device and operated using 1 M sulfuric acid as electrolyte. In addition, various quinones were added to the electrolyte and their impact on the capacitance of AC-CSS electrodes was analyzed. In this work, we were able to show that CSS are a valuable source for supercapacitor applications and that coffee-waste-derived quinones can act as capacitance enhancers. Thus, the findings of this research show a valuable path towards sustainable and green energy storage solutions.

4.
ACS Sustain Chem Eng ; 10(26): 8314-8325, 2022 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-35847521

RESUMO

One main challenge to utilize cellulose-based fibers as the precursor for carbon fibers is their inherently low carbon yield. This study aims to evaluate the use of keratin in chicken feathers, a byproduct of the poultry industry generated in large quantities, as a natural charring agent to improve the yield of cellulose-derived carbon fibers. Keratin-cellulose composite fibers are prepared through direct dissolution of the pulp and feather keratin in the ionic liquid 1,5-diazabicyclo[4.3.0]non-5-enium acetate ([DBNH]OAc) and subsequent dry jet wet spinning (so-called Ioncell process). Thermogravimetric analysis reveals that there is an increase in the carbon yield by ∼53 wt % with 30 wt % keratin incorporation. This increase is comparable to the one observed for lignin-cellulose composite fibers, in which lignin acts as a carbon booster due to its higher carbon content. Keratin, however, reduces the mechanical properties of cellulose precursor fibers to a lesser extent than lignin. Keratin introduces nitrogen and induces the formation of pores in the precursor fibers and the resulting carbon fibers. Carbon materials derived from the keratin-cellulose composite fiber show potential for applications where nitrogen doping and pores or voids in the carbon are desirable, for example, for low-cost bio-based carbons for energy harvest or storage.

5.
Carbohydr Polym ; 265: 118063, 2021 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-33966827

RESUMO

The increasing amount of electric vehicles on our streets as well as the need to store surplus energy from renewable sources such as wind, solar and tidal parks, has brought small and large scale batteries into the focus of academic and industrial research. While there has been huge progress in performance and cost reduction in the past years, batteries and their components still face several environmental issues including safety, toxicity, recycling and sustainability. In this review, we address these challenges by showcasing the potential of polysaccharide-based compounds and materials used in batteries. This particularly involves their use as electrode binders, separators and gel/solid polymer electrolytes. The review contains a historical section on the different battery technologies, considerations about safety on batteries and requirements of polysaccharide components to be used in different types of battery technologies. The last sections cover opportunities for polysaccharides as well as obstacles that prevent their wider use in battery industry.


Assuntos
Fontes de Energia Elétrica , Polissacarídeos/química , Energia Renovável , Alginatos/química , Celulose/química , Quitosana/química , Eletrodos , Eletrólitos/química , Nanopartículas/química , Polímeros/química , Reciclagem
6.
Polymers (Basel) ; 12(10)2020 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-33003651

RESUMO

The optimization of the thermal treatment of cationic starch in the paper industry offers the opportunity to reduce the energy consumption of this process. Four different industrially relevant cationic starches, varying in source, cationization method and degree of substitution were treated by a steam-jet cooking procedure, comparable to industrially employed starch cooking processes. The influence of the starch properties and cooking parameters on the adsorption behavior of the starches on cellulosic pulp was investigated. The adsorbed amount was affected by the cooking temperature and the type of starch. For some starch grades, a cooking temperature of 115 °C can be employed to achieve sufficient starch retention on the pulp fibers. The energy consumption could further be reduced by cooking at higher starch concentrations without loss of adsorption efficiency.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...