Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
FEBS Lett ; 567(2-3): 270-4, 2004 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-15178335

RESUMO

Data from site-directed mutagenesis and X-ray crystallography show that His103 of holotransketolase (holoTK) does not come into contact with thiamin diphosphate (ThDP) but stabilizes the transketolase (TK) reaction intermediate, alpha,beta-dihydroxyethyl-thiamin diphosphate, by forming a hydrogen bond with the oxygen of its beta-hydroxyethyl group [Eur. J. Biochem. 233 (1995) 750; Proc. Natl. Acad. Sci. USA 99 (2002) 591]. We studied the influence of His103 mutation on ThDP-binding and enzymatic activity. It was found that mutation does not affect the affinity of the coenzyme to apotransketolase (apoTK) in the presence of Ca(2+) (a cation found in the native holoenzyme) but changes all the kinetic parameters of the ThDP-apoTK interaction in the presence of Mg(2+) (a cation commonly used in ThDP-dependent enzymes studies). It was concluded that the structures of TK active centers formed in the presence of Mg(2+) and Ca(2+) are not identical. Mutation of His103 led to a significant acceleration of the one-substrate reaction but a slow down of the two-substrate reaction so that the rates of both types of catalysis became equal. Our results provide evidence for the intermediate-stabilizing function of His103.


Assuntos
Saccharomyces cerevisiae/enzimologia , Transcetolase/genética , Transcetolase/metabolismo , Alanina/genética , Substituição de Aminoácidos , Sítios de Ligação , Cálcio/química , Cálcio/metabolismo , Dimerização , Histidina/genética , Holoenzimas/química , Holoenzimas/metabolismo , Cinética , Magnésio/química , Magnésio/metabolismo , Mutagênese Sítio-Dirigida , Ligação Proteica , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae/genética , Especificidade por Substrato , Tiamina Pirofosfato/metabolismo
2.
Nat Genet ; 36(4): 382-7, 2004 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-15034580

RESUMO

Stress tolerance of the heart requires high-fidelity metabolic sensing by ATP-sensitive potassium (K(ATP)) channels that adjust membrane potential-dependent functions to match cellular energetic demand. Scanning of genomic DNA from individuals with heart failure and rhythm disturbances due to idiopathic dilated cardiomyopathy identified two mutations in ABCC9, which encodes the regulatory SUR2A subunit of the cardiac K(ATP) channel. These missense and frameshift mutations mapped to evolutionarily conserved domains adjacent to the catalytic ATPase pocket within SUR2A. Mutant SUR2A proteins showed aberrant redistribution of conformations in the intrinsic ATP hydrolytic cycle, translating into abnormal K(ATP) channel phenotypes with compromised metabolic signal decoding. Defective catalysis-mediated pore regulation is thus a mechanism for channel dysfunction and susceptibility to dilated cardiomyopathy.


Assuntos
Transportadores de Cassetes de Ligação de ATP/genética , Cardiomiopatia Dilatada/genética , Ativação do Canal Iônico/genética , Mutação , Canais de Potássio Corretores do Fluxo de Internalização , Canais de Potássio/genética , Receptores de Droga/genética , Adulto , Sequência de Aminoácidos , Animais , Catálise , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Dados de Sequência Molecular , Homologia de Sequência de Aminoácidos , Receptores de Sulfonilureias
3.
Mol Cell Biochem ; 256-257(1-2): 243-56, 2004.
Artigo em Inglês | MEDLINE | ID: mdl-14977185

RESUMO

Transmission of energetic signals to membrane sensors, such as the ATP-sensitive K+ (KATP) channel, is vital for cellular adaptation to stress. Yet, cell compartmentation implies diffusional hindrances that hamper direct reception of cytosolic energetic signals. With high intracellular ATP levels, KATP channels may sense not bulk cytosolic, but rather local submembrane nucleotide concentrations set by membrane ATPases and phosphotransfer enzymes. Here, we analyzed the role of adenylate kinase and creatine kinase phosphotransfer reactions in energetic signal transmission over the strong diffusional barrier in the submembrane compartment, and translation of such signals into a nucleotide response detectable by KATP channels. Facilitated diffusion provided by creatine kinase and adenylate kinase phosphotransfer dissipated nucleotide gradients imposed by membrane ATPases, and shunted diffusional restrictions. Energetic signals, simulated as deviation of bulk ATP from its basal level, were amplified into an augmented nucleotide response in the submembrane space due to failure under stress of creatine kinase to facilitate nucleotide diffusion. Tuning of creatine kinase-dependent amplification of the nucleotide response was provided by adenylate kinase capable of adjusting the ATP/ADP ratio in the submembrane compartment securing adequate KATP channel response in accord with cellular metabolic demand. Thus, complementation between creatine kinase and adenylate kinase systems, here predicted by modeling and further supported experimentally, provides a mechanistic basis for metabolic sensor function governed by alterations in intracellular phosphotransfer fluxes.


Assuntos
Adenilato Quinase/metabolismo , Creatina/metabolismo , Ativação do Canal Iônico , Canais de Potássio/metabolismo , Animais , Catálise , Metabolismo Energético , Transdução de Sinais
4.
J Biol Chem ; 277(27): 24427-34, 2002 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-11967264

RESUMO

Transduction of metabolic signals is essential in preserving cellular homeostasis. Yet, principles governing integration and synchronization of membrane metabolic sensors with cell metabolism remain elusive. Here, analysis of cellular nucleotide fluxes and nucleotide-dependent gating of the ATP-sensitive K+ (K(ATP)) channel, a prototypic metabolic sensor, revealed a diffusional barrier within the submembrane space, preventing direct reception of cytosolic signals. Creatine kinase phosphotransfer, captured by 18O-assisted 31P NMR, coordinated tightly with ATP turnover, reflecting the cellular energetic status. The dynamics of high energy phosphoryl transfer through the creatine kinase relay permitted a high fidelity transmission of energetic signals into the submembrane compartment synchronizing K(ATP) channel activity with cell metabolism. Knock-out of the creatine kinase M-CK gene disrupted signal delivery to K(ATP) channels and generated a cellular phenotype with increased electrical vulnerability. Thus, in the compartmentalized cell environment, phosphotransfer systems shunt diffusional barriers and secure regimented signal transduction integrating metabolic sensors with the cellular energetic network.


Assuntos
Creatina Quinase/genética , Metabolismo Energético/fisiologia , Coração/fisiologia , Isoenzimas/genética , Miocárdio/metabolismo , Difosfato de Adenosina/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Membrana Celular/metabolismo , Creatina Quinase/deficiência , Creatina Quinase/metabolismo , Creatina Quinase Forma MM , Isoenzimas/deficiência , Isoenzimas/metabolismo , Cinética , Espectroscopia de Ressonância Magnética , Potenciais da Membrana , Camundongos , Camundongos Knockout , Modelos Biológicos , Canais de Potássio/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA