Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Eur J Pharmacol ; 941: 175442, 2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36470447

RESUMO

Ozanimod is approved in multiple countries for the treatment of adults with either relapsing multiple sclerosis or moderately to severely active ulcerative colitis. Ozanimod is metabolized in humans to form seven active plasma metabolites, including two major active metabolites CC112273 and CC1084037, and an inactive metabolite. Here, the binding and activity of ozanimod and its metabolites across human sphingosine 1-phosphate receptors were determined. Binding affinity was assessed in Chinese hamster ovary cell membranes expressing recombinant human sphingosine 1-phosphate receptors 1 and 5 via competitive radioligand binding using tritium-labeled ozanimod; selectivity via functional potency assessment was performed using [35S]-guanosine-5'-(γ-thio)-triphosphate binding assays. Receptor internalization was assessed in human embryonic kidney 293 cells overexpressing sphingosine 1-phosphate receptor 1-green fluorescent protein and Chinese hamster ovary cells overexpressing sphingosine 1-phosphate receptor 5-hemagglutinin via fluorescence activated cell sorting. Functional activity was assessed in primary cultures of human astrocytes via phosphorylation assays. Ozanimod and its functionally active metabolites bound to the same sites within sphingosine 1-phosphate receptors 1 and 5, with metabolites displaying the same selectivity profile as ozanimod. Agonism at sphingosine 1-phosphate receptor 1 induced receptor internalization, whereas sphingosine 1-phosphate receptor 5 did not. Ozanimod, CC112273, and CC1084037 elicited functional intracellular signaling in human astrocytes, pharmacologically characterized to be mediated by sphingosine 1-phosphate receptor 1. The active plasma metabolites of ozanimod bound to sphingosine 1-phosphate receptors 1 and 5 and displayed similar pharmacologic profiles as their parent compound, likely contributing to clinical efficacy in patients with relapsing multiple sclerosis or moderately to severely active ulcerative colitis.


Assuntos
Colite Ulcerativa , Esclerose Múltipla , Adulto , Animais , Cricetinae , Humanos , Receptores de Esfingosina-1-Fosfato/metabolismo , Colite Ulcerativa/tratamento farmacológico , Células CHO , Cricetulus , Indanos/farmacologia , Indanos/uso terapêutico , Oxidiazóis/farmacologia , Esfingosina , Esclerose Múltipla/tratamento farmacológico
2.
Front Pharmacol ; 13: 892097, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35784713

RESUMO

Ozanimod, a sphingosine 1-phosphate (S1P) receptor modulator, binds with high affinity selectively to S1P receptor subtypes 1 (S1P1) and 5 (S1P5), and is approved in multiple countries for treating adults with relapsing forms of multiple sclerosis (MS) or moderately to severely active ulcerative colitis (UC). Other S1P receptor modulators have been approved for the treatment of MS or are in clinical development for MS or UC, but it is unknown whether these compounds bind competitively with each other to S1P1 or S1P5. We developed a competitive radioligand binding assay using tritiated ozanimod and demonstrate full displacement of ozanimod by S1P (endogenous ligand), suggesting that ozanimod binds to the S1P1 and S1P5 orthosteric binding sites. S1P receptor modulators FTY720-p, siponimod, etrasimod, ponesimod, KRP-203-p, and amiselimod-p also completely displacing radiolabeled ozanimod; thus, on a macroscopic level, all bind to the same site. Molecular docking studies support these results and predict the binding of each molecule to the orthosteric site of the receptors, creating similar interactions within S1P1 and S1P5. The absolute free energy perturbation method further validated key proposed binding modes. Functional potency tightly aligned with binding affinities across S1P1 and S1P5 and all compounds elicited S1P1-mediated ß-arrestin recruitment. Since all the S1P modulators included in this study display similar receptor pharmacology and compete for binding at the same site, they can be considered interchangeable with one another. The choice of any one particular agent should therefore be made on the basis of overall therapeutic profile, and patients can be offered the opportunity to switch S1P medications without the potential concern of additive S1P pharmacology.

3.
J Pharmacol Exp Ther ; 379(3): 386-399, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34535564

RESUMO

Ozanimod, a sphingosine 1-phosphate (S1P) receptor modulator that binds with high affinity selectively to S1P receptor subtypes 1 (S1P1) and 5 (S1P5), is approved for the treatment of relapsing multiple sclerosis (MS) in multiple countries. Ozanimod profiling revealed a species difference in its potency for S1P5 in mouse, rat, and canine compared with that for human and monkey. Site-directed mutagenesis identified amino acid alanine at position 120 to be responsible for loss of activity for mouse, rat, and canine S1P5, and mutation back to threonine as in human/monkey S1P5 restored activity. Radioligand binding analysis performed with mouse S1P5 confirmed the potency loss is a consequence of a loss of affinity of ozanimod for mouse S1P5 and was restored with mutation of alanine 120 to threonine. Study of ozanimod in preclinical mouse models of MS can now determine the S1P receptor(s) responsible for observed efficacies with receptor engagement as measured using pharmacokinetic exposures of free drug. Hence, in the experimental autoimmune encephalomyelitis model, ozanimod exposures sufficient to engage S1P1, but not S1P5, resulted in reduced circulating lymphocytes, disease scores, and body weight loss; reduced inflammation, demyelination, and apoptotic cell counts in the spinal cord; and reduced circulating levels of the neuronal degeneration marker, neurofilament light. In the demyelinating cuprizone model, ozanimod prevented axonal degradation and myelin loss during toxin challenge but did not facilitate enhanced remyelination after intoxication. Since free drug levels in this model only engaged S1P1, we concluded that S1P1 activation is neuroprotective but does not appear to affect remyelination. SIGNIFICANCE STATEMENT: Ozanimod, a selective modulator of human sphingisone 1-phosphate receptor subtypes 1 and 5 (S1P1/5), displays reduced potency for rodent and dog S1P5 compared with human, which results from mutation of threonine to alanine at position 120. Ozanimod can thus be used as a selective S1P1 agonist in mouse models of multiple sclerosis to define efficacies driven by S1P1 but not S1P5. Based on readouts for experimental autoimmune encephalomyelitis and cuprizone intoxication, S1P1 modulation is neuroprotective, but S1P5 activity may be required for remyelination.


Assuntos
Encefalomielite Autoimune Experimental/metabolismo , Indanos/metabolismo , Esclerose Múltipla/metabolismo , Oxidiazóis/metabolismo , Moduladores do Receptor de Esfingosina 1 Fosfato/metabolismo , Receptores de Esfingosina-1-Fosfato/metabolismo , Sequência de Aminoácidos , Animais , Células CHO , Cricetinae , Cricetulus , Modelos Animais de Doenças , Cães , Relação Dose-Resposta a Droga , Encefalomielite Autoimune Experimental/tratamento farmacológico , Encefalomielite Autoimune Experimental/genética , Feminino , Humanos , Indanos/farmacologia , Indanos/uso terapêutico , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Esclerose Múltipla/tratamento farmacológico , Esclerose Múltipla/genética , Oxidiazóis/farmacologia , Oxidiazóis/uso terapêutico , Ratos , Especificidade da Espécie , Moduladores do Receptor de Esfingosina 1 Fosfato/farmacologia , Moduladores do Receptor de Esfingosina 1 Fosfato/uso terapêutico , Receptores de Esfingosina-1-Fosfato/química , Receptores de Esfingosina-1-Fosfato/genética
4.
Drug Metab Dispos ; 49(8): 601-609, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34011531

RESUMO

Ozanimod, recently approved for treating relapsing multiple sclerosis, produced a disproportionate, active, MAO B-catalyzed metabolite (CC112273) that showed remarkable interspecies differences and led to challenges in safety testing. This study explored the kinetics of CC112273 formation from its precursor RP101075. Incubations with human liver mitochondrial fractions revealed K Mapp, V max, and intrinsic clearance (Clint) for CC112273 formation to be 4.8 µM, 50.3 pmol/min/mg protein, and 12 µl/min/mg, respectively, whereas Michaelis-Menten constant (K M) with human recombinant MAO B was 1.1 µM. Studies with liver mitochondrial fractions from preclinical species led to K Mapp, V max, and Clint estimates of 3.0, 35, and 33 µM, 80.6, 114, 37.3 pmol/min/mg, and 27.2, 3.25, and 1.14 µl/min/mg in monkey, rat, and mouse, respectively, and revealed marked differences between rodents and primates, primarily attributable to differences in the K M Comparison of Clint estimates revealed monkey to be ∼2-fold more efficient and the mouse and rat to be 11- and 4-fold less efficient than humans in CC112273 formation. The influence of stereochemistry on MAO B-mediated oxidation was also investigated using the R-isomer of RP101075 (RP101074). This showed marked selectivity toward catalysis of the S-isomer (RP101075) only. Docking into MAO B crystal structure suggested that although both the isomers occupied its active site, only the orientation of RP101075 presented the C-H on the α-carbon that was ideal for the C-H bond cleavage, which is a requisite for oxidative deamination. These studies explain the basis for the observed interspecies differences in the metabolism of ozanimod as well as the substrate stereospecificity for formation of CC112273. SIGNIFICANCE STATEMENT: This study evaluates the enzymology and the species differences of the major circulating metabolite of ozanimod, CC112273. Additionally, the study also explores the influence of stereochemistry on MAO B-catalyzed reactions. The study is of significance to the DMD readers given that this oxidation is catalyzed by a non-cytochrome P450 enzyme, and that marked species difference and notable stereospecificity was observed in MAO B-catalyzed biotransformation when the indaneamine enantiomers were used as substrates.


Assuntos
Indanos/farmacocinética , Monoaminoxidase/metabolismo , Oxidiazóis/farmacocinética , Animais , Biotransformação , Desaminação , Avaliação Pré-Clínica de Medicamentos , Haplorrinos , Humanos , Indanos/sangue , Taxa de Depuração Metabólica , Camundongos , Mitocôndrias Hepáticas/metabolismo , Esclerose Múltipla Recidivante-Remitente/tratamento farmacológico , Oxidiazóis/sangue , Oxirredução , Ratos , Especificidade da Espécie , Moduladores do Receptor de Esfingosina 1 Fosfato/sangue , Moduladores do Receptor de Esfingosina 1 Fosfato/farmacocinética , Estereoisomerismo
5.
Drug Metab Dispos ; 49(5): 405-419, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33674268

RESUMO

Ozanimod is approved for the treatment of relapsing forms of multiple sclerosis. Absorption, metabolism, and excretion of ozanimod were investigated after a single oral dose of 1.0 mg [14C]ozanimod hydrochloride to six healthy subjects. In vitro experiments were conducted to understand the metabolic pathways and enzymes involved in the metabolism of ozanimod and its active metabolites. The total mean recovery of the administered radioactivity was ∼63%, with ∼26% and ∼37% recovered from urine and feces, respectively. Based on exposure, the major circulating components were active metabolite CC112273 and inactive metabolite RP101124, which together accounted for 50% of the circulating total radioactivity exposure, whereas ozanimod accounted for 6.7% of the total radioactive exposure. Ozanimod was extensively metabolized, with 14 metabolites identified, including two major active metabolites (CC112273 and CC1084037) and one major inactive metabolite (RP101124) in circulation. Ozanimod is metabolized by three primary pathways, including aldehyde dehydrogenase and alcohol dehydrogenase, cytochrome P450 isoforms 3A4 and 1A1, and reductive metabolism by gut microflora. The primary metabolite RP101075 is further metabolized to form major active metabolite CC112273 by monoamine oxidase B, which further undergoes reduction by carbonyl reductases to form CC1084037 or CYP2C8-mediated oxidation to form RP101509. CC1084037 is oxidized rapidly to form CC112273 by aldo-keto reductase 1C1/1C2 and/or 3ß- and 11ß-hydroxysteroid dehydrogenase, and this reversible oxidoreduction between two active metabolites favors CC112273. The ozanimod example illustrates the need for conducting timely radiolabeled human absorption, distribution, metabolism, and excretion studies for characterization of disproportionate metabolites and assessment of exposure coverage during drug development. SIGNIFICANCE STATEMENT: Absorption, metabolism, and excretion of ozanimod were characterized in humans, and the enzymes involved in complex metabolism were elucidated. Disproportionate metabolites were identified, and the activity of these metabolites was determined.


Assuntos
Indanos/administração & dosagem , Indanos/metabolismo , Oxidiazóis/administração & dosagem , Oxidiazóis/metabolismo , Moduladores do Receptor de Esfingosina 1 Fosfato/administração & dosagem , Moduladores do Receptor de Esfingosina 1 Fosfato/metabolismo , Receptores de Esfingosina-1-Fosfato/metabolismo , Administração Oral , Adulto , Animais , Células CHO , Cricetinae , Cricetulus , Humanos , Masculino , Pessoa de Meia-Idade
6.
Mol Cell Endocrinol ; 259(1-2): 1-9, 2006 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-16987592

RESUMO

The capacity of novel benzopyridazinone-based antagonists to inhibit MCH-R1 function, relative to their affinity for the receptor, has been investigated. Three compounds that differ by the addition of either a chlorine atom, or trifluoromethyl group, have nearly identical receptor affinities; however their abilities to inhibit receptor elicited signaling events, measured as a function of time, are dramatically altered. Both the chlorinated and trifluoromethyl modified compounds have a very slow on-rate to maximal functional inhibition relative to the unmodified base compound. A similar impact on inhibitory capacity can be achieved by modifying the side-chain composition at position 2.53 of the receptor; replacement of the native phenylalanine with alanine significantly reduces the amount of time required by the chlorinated compound to attain maximal functional inhibition. The primary attribute responsible for this alteration in inhibitory capacity appears to be the overall bulk of the amino acid at this position-substitution of the similarly sized amino acids leucine and tyrosine results in phenotypes that are indistinguishable from the wild type receptor. Finally, the impact of these differential inhibitory kinetics has been examined in cultured rat neurons by measuring the ability of the compounds to reverse MCH mediated inhibition of calcium currents. As observed using the cell expression models, the chlorinated compound has a diminished capacity to interfere with receptor function. Collectively, these data suggest that differential inhibitory on rates between a small-molecule antagonist and its target receptor can impact the ability of the compound to modify the biological response(s) elicited by the receptor.


Assuntos
Piridazinas/química , Piridazinas/farmacocinética , Receptores de Somatostatina/antagonistas & inibidores , Receptores de Somatostatina/metabolismo , Somatostatina/antagonistas & inibidores , Aminoácidos/química , Animais , Cálcio/metabolismo , Agonistas dos Canais de Cálcio/química , Agonistas dos Canais de Cálcio/farmacocinética , Canais de Cálcio/metabolismo , Células Cultivadas , Desenho de Fármacos , Humanos , Interações Hidrofóbicas e Hidrofílicas , Modelos Biológicos , Neurônios/efeitos dos fármacos , Ratos , Receptores de Somatostatina/química
7.
J Biomol Screen ; 11(4): 351-8, 2006 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-16751331

RESUMO

Currently, the most popular means of assessing functional activity of Gs/olf-coupled receptors is via the measurement of intracellular cyclic adenosine monophosphate (cAMP) accumulation. An additional readout is the downstream phosphorylation of cAMP response element binding protein (CREB), which gives an indication of gene transcription, the ultimate response of many G-protein-coupled receptor (GPCR) signals. Current methods of quantifying CREB phosphorylation are low throughput, and so we have designed a novel higher throughput method using the Odyssey infrared imaging system. Functional potencies of both agonists and antagonists correlate well with radioligand binding affinities determined using examples of both an endogenous (adenosine(2A) receptor in PC-12 cells) and a heterologous (human melanocortin 4 receptor in HEK-293 cells) expression system. For example, the antagonist ZM241385 demonstrates 0.23+/-0.03 nM affinity for the A(2A) receptor and has a functional potency of 0.26+/-0.04 nM determined using cAMP and 0.15+/-0.06 nM using CREB phosphorylation. These data demonstrate that this novel approach for the measurement of CREB phosphorylation is a useful tool for the assessment of GPCR activity in whole cells and is more amenable to the throughput required for the purposes of drug discovery.


Assuntos
Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Adenosina/análogos & derivados , Adenosina/farmacologia , Agonistas do Receptor A2 de Adenosina , Animais , Western Blotting , Linhagem Celular , AMP Cíclico/metabolismo , Avaliação Pré-Clínica de Medicamentos/métodos , Humanos , Técnicas In Vitro , Raios Infravermelhos , Células PC12 , Fenetilaminas/farmacologia , Fosforilação , Ensaio Radioligante , Ratos , Receptor Tipo 4 de Melanocortina/metabolismo , Receptores A2 de Adenosina/metabolismo , Proteínas Recombinantes/metabolismo
8.
Eur J Neurosci ; 21(12): 3217-28, 2005 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-16026460

RESUMO

Glutamate is the major excitatory neurotransmitter in the central nervous system and is tightly regulated by cell surface transporters to avoid increases in concentration and associated neurotoxicity. Selective blockers of glutamate transporter subtypes are sparse and so knock-out animals and antisense techniques have been used to study their specific roles. Here we used WAY-855, a GLT-1-preferring blocker, to assess the role of GLT-1 in rat hippocampus. GLT-1 was the most abundant transporter in the hippocampus at the mRNA level. According to [(3)H]-l-glutamate uptake data, GLT-1 was responsible for approximately 80% of the GLAST-, GLT-1-, and EAAC1-mediated uptake that occurs within dissociated hippocampal tissue, yet when this transporter was preferentially blocked for 120 h with WAY-855 (100 microm), no significant neurotoxicity was observed in hippocampal slices. This is in stark contrast to results obtained with TBOA, a broad-spectrum transport blocker, which, at concentrations that caused a similar inhibition of glutamate uptake (10 and 30 microm), caused substantial neuronal death when exposed to the slices for 24 h or longer. Likewise, WAY-855, did not significantly exacerbate neurotoxicity associated with simulated ischemia, whereas TBOA did. Finally, intrahippocampal microinjection of WAY-855 (200 and 300 nmol) in vivo resulted in marginal damage compared with TBOA (20 and 200 nmol), which killed the majority of both CA1-4 pyramidal cells and dentate gyrus granule cells. These results indicate that selective inhibition of GLT-1 is insufficient to provoke glutamate build-up, leading to NMDA receptor-mediated neurotoxic effects, and suggest a prominent role of GLAST and/or EAAC1 in extracellular glutamate maintenance.


Assuntos
Inibidores Enzimáticos/toxicidade , Transportador 2 de Aminoácido Excitatório/fisiologia , Ácido Glutâmico/metabolismo , Heptanos/toxicidade , Compostos Heterocíclicos com 3 Anéis/toxicidade , Hipocampo/efeitos dos fármacos , Homeostase/efeitos dos fármacos , Sistema X-AG de Transporte de Aminoácidos/fisiologia , Animais , Animais Recém-Nascidos , Ácido Aspártico/farmacologia , Western Blotting/métodos , Morte Celular/efeitos dos fármacos , Células Cultivadas , Maleato de Dizocilpina/farmacologia , Relação Dose-Resposta a Droga , Interações Medicamentosas , Agonistas de Aminoácidos Excitatórios/farmacologia , Antagonistas de Aminoácidos Excitatórios/farmacologia , Transportador 2 de Aminoácido Excitatório/genética , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Hipocampo/citologia , Humanos , Imuno-Histoquímica/métodos , Hibridização In Situ/métodos , Técnicas In Vitro , Potenciais da Membrana/efeitos dos fármacos , Potenciais da Membrana/fisiologia , N-Metilaspartato/farmacologia , Neurônios/efeitos dos fármacos , Neurônios/fisiologia , Técnicas de Patch-Clamp/métodos , Ratos , Fatores de Tempo , Trítio/metabolismo
9.
Eur J Neurosci ; 21(8): 2291-6, 2005 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-15869527

RESUMO

Excitatory amino acid transporters (EAATs) maintain the balance between pathological and physiological conditions by limiting the extracellular concentration of glutamate within the CNS and thus preventing excitotoxic injury. The loss of EAAT2 has been associated with the development of neurological diseases such as amyotrophic lateral sclerosis. It has therefore been suggested that the over-expression of specific EAATs may provide some degree of neuroprotection. However, the inability to isolate and study the function of the different EAAT isoforms in a cell type-specific manner has made it difficult to determine the exact contribution of individual EAATs toward neuroprotection or neurodegeneration in the context of excitotoxic injury. To address this question, we transduced hippocampal slice cultures from 1-week-old C57B/6 mice with recombinant adeno-associated virus carrying an EAAT2 gene expression cassette. EAAT2 gene expression was driven in neurons with the neuron-specific enolase promoter. Using this model system, we were able to induce a significant increase in the expression of functional EAAT2. Consequently, a significant increase in CA1 neuronal damage was observed in slices over-expressing EAAT2 in neurons following an acute exposure to exogenous glutamate. These data suggest that the increased expression of EAAT2 within neurons may contribute to neurodegeneration.


Assuntos
Sistema X-AG de Transporte de Aminoácidos/metabolismo , Expressão Gênica/fisiologia , Hipocampo/citologia , Ácido Caínico/análogos & derivados , Células Piramidais/fisiologia , Simportadores/metabolismo , Sistema X-AG de Transporte de Aminoácidos/genética , Análise de Variância , Animais , Animais Recém-Nascidos , Ácido Aspártico/farmacologia , Western Blotting/métodos , Morte Celular/efeitos dos fármacos , Células Cultivadas , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/farmacologia , Transportador 2 de Aminoácido Excitatório , Proteínas de Transporte de Glutamato da Membrana Plasmática , Ácido Glutâmico/metabolismo , Ácido Glutâmico/farmacologia , Proteínas de Fluorescência Verde/metabolismo , Humanos , Ácido Caínico/farmacologia , Camundongos , Neuroglia/fisiologia , Técnicas de Cultura de Órgãos , Fosfopiruvato Hidratase/metabolismo , Simportadores/genética , Fatores de Tempo , Transdução Genética/métodos , Trítio/metabolismo
10.
J Neurochem ; 80(2): 346-53, 2002 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-11905408

RESUMO

A Chinese hamster ovary cell line has been established which secretes the N-terminal domain of human mGlu1 receptor. The secreted protein has been modified to contain a C-terminal hexa-histidine tag and can be purified by metal-chelate chromatography to yield a protein with an apparent molecular weight of 130 kDa. Following treatment with dithiothreitol the apparent molecular weight is reduced to 75 kDa showing that the protein is a disulphide-bonded dimer. N-terminal protein sequencing of both the reduced and unreduced forms of the protein yielded identical sequences, confirming that they were derived from the same protein, and identifying the site of signal-peptide cleavage of the receptor as residue 32 in the predicted amino acid sequence. Endoglycosidase treatment of the secreted and intracellular forms of the protein showed that the latter was present as an endoglycosidase H-sensitive dimer, indicating that dimerization is taking place in the endoplasmic reticulum. Characterization of the binding of [3H]quisqualic acid showed that the protein was secreted at levels of up to 2.4 pmol/mL and the secreted protein has a Kd of 5.6 +/- 1.8 nm compared with 10 +/- 1 nm for baby hamster kidney (BHK)-mGlu1alpha receptor-expressing cell membranes. The secreted protein maintained a pharmacological profile similar to that of the native receptor and the binding of glutamate and quisqualate were unaffected by changes in Ca2+ concentration.


Assuntos
Benzoatos , Glicina/análogos & derivados , Receptores de Glutamato Metabotrópico/química , Receptores de Glutamato Metabotrópico/genética , Sequência de Aminoácidos , Animais , Ligação Competitiva , Células CHO , Cricetinae , Dimerização , Antagonistas de Aminoácidos Excitatórios/farmacologia , Proteínas de Ligação ao GTP/metabolismo , Glicina/farmacologia , Glicosídeo Hidrolases/farmacologia , Glicosilação , Humanos , Dados de Sequência Molecular , Fragmentos de Peptídeos/metabolismo , Estrutura Terciária de Proteína , Ácido Quisquálico/farmacologia , Receptores de Glutamato Metabotrópico/metabolismo , Transfecção , Trítio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...