Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Mult Scler ; 28(9): 1340-1350, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35112578

RESUMO

BACKGROUND: Peripheral helper T cells (Tph) are likely implicated in the pathogenesis of various inflammatory diseases. Tph cells share functions with follicular helper T cells, including plasma cell differentiation and antibody production. OBJECTIVE AND METHODS: To investigate a possible role of Tph cells in the pathogenesis of multiple sclerosis (MS), we used flow cytometry to analyze the function, phenotype, and central nervous system (CNS)-recruitment of Tph cells in the blood and cerebrospinal fluid (CSF) from controls and patients with relapsing-remitting (RR) and primary progressive (PP) MS. RESULT: This study identified two functionally distinct Tph cell populations and a regulatory counterpart, Tpr cells. No differences in blood frequencies, cytokine production, or potential to interact with B cells were found between controls and patients with MS. Along with an equal CNS-migration potential, we found both Tph cell populations enriched in the CSF; and surprisingly, an increased frequency of intrathecal Tph cells in the control group compared to patients with MS. CONCLUSION: Altogether, we did not find an increased frequency of CSF Tph cells in patients with RRMS or PPMS. Our findings indicate that rather than being involved in MS pathogenesis, Tph cells may be implicated in normal CNS immunosurveillance.


Assuntos
Esclerose Múltipla Recidivante-Remitente , Esclerose Múltipla , Linfócitos B , Citometria de Fluxo , Humanos , Ativação Linfocitária , Esclerose Múltipla/patologia , Linfócitos T Auxiliares-Indutores
4.
Neurol Neuroimmunol Neuroinflamm ; 3(4): e256, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27386506

RESUMO

OBJECTIVE: We aimed to investigate the role of oxidative stress in the progression of multiple sclerosis (MS). METHODS: We determined by liquid chromatography-tandem mass spectrometry nonenzymatic (F2-isoprostanes) and enzymatic oxidation products of arachidonic acid (prostaglandin F2α [PGF2α]) in plasma and CSF of 45 controls (other neurologic disease [OND] with no signs of inflammation) and 62 patients with MS. Oxidation products were correlated with disease severity and validated biomarkers of inflammation (chemokine ligand 13; matrix metalloproteinase-9; osteopontin) and axonal damage (neurofilament light protein). RESULTS: Compared with OND controls, plasma concentrations of F2-isoprostanes and PGF2α were significantly lower in patients with progressive disease, and decreased with increasing disability score (Expanded Disability Status Scale). In contrast, CSF concentrations of PGF2α, but not F2-isoprostanes, were significantly higher in patients with progressive disease than OND controls (p < 0.01). The content of PGF2α in CSF increased with disease severity (p = 0.044) and patient age (p = 0.022), although this increase could not be explained by age. CSF PGF2α decreased with natalizumab and methylprednisolone treatment and was unaffected by the use of nonsteroidal anti-inflammatory drug in secondary progressive MS. CSF PGF2α did not associate with validated CSF markers of inflammation and axonal damage that themselves did not associate with the Expanded Disability Status Scale. CONCLUSIONS: Our data suggest that MS progression is associated with low systemic oxidative activity. This may contribute to immune dysregulation with CNS inflammation accompanied by increased local cyclooxygenase-dependent lipid oxidation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...