Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Anat Rec (Hoboken) ; 306(10): 2514-2536, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-36896818

RESUMO

A reversion to secondary quadrupedality is exceptionally rare in nature, yet the convergent re-evolution of this locomotor style occurred at least four separate times within Dinosauria. Facultative quadrupedality, an intermediate state between obligate bipedality and obligate quadrupedality, may have been an important transitional step in this locomotor shift, and is proposed for a range of basal ornithischians and sauropodomorphs. Advances in virtual biomechanical modeling and simulation have allowed for the investigation of limb anatomy and function in a range of extinct dinosaurian species, yet this technique has not been widely applied to explore facultatively quadrupedal gait generation. This study places its focus on Scutellosaurus, a basal thyreophoran that has previously been described as both an obligate biped and a facultative quadruped. The functional anatomy of the musculoskeletal system (myology, mass properties, and joint ranges of motion) has been reconstructed using extant phylogenetic bracketing and comparative anatomical datasets. This information was used to create a multi-body dynamic locomotor simulation that demonstrates that whil quadrupedal gaits were physically possible, they did not outperform bipedal gaits is any tested metric. Scutellosaurus cannot therefore be described as an obligate biped, but we would predict its use of quadrupedality would be very rare, and perhaps restricted to specific activities such as foraging. This finding suggests that basal thyreophorans are still overwhelmingly bipedal but is perhaps indicative of an adaptive pathway for later evolution of quadrupedality.


Assuntos
Evolução Biológica , Dinossauros , Animais , Filogenia , Dinossauros/anatomia & histologia , Marcha , Simulação por Computador , Fenômenos Biomecânicos
2.
Anat Rec (Hoboken) ; 306(1): 60-78, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36054304

RESUMO

The growth and development of long bones are of considerable interests in the fields of comparative anatomy and palaeoanthropology, as evolutionary changes and adaptations to specific physical activity patterns are expected to be revealed during bone ontogeny. Traditionally, the cross-sectional geometry of long bones has been examined at discrete locations usually placed at set intervals or fixed percentage distances along the midline axis of the bone shaft. More recently, the technique of morphometric mapping has enabled the continuous analysis of shape variation along the shaft. Here we extend this technique to the full sequence of late fetal and postnatal development of the humeral shaft in a modern human population sample, with the aim of establishing the shape changes during growth and their relationship with the development of the arm musculature and activity patterns. A sample of modern human humeri from individuals of age ranging from 24 weeks in utero to 18 years was imaged using microtomography at multiple resolutions and custom Matlab scripts. Standard biomechanical properties, cortical thickness, surface curvature, and pseudo-landmarks were extracted along radial vectors spaced at intervals of 1° at each 0.5% longitudinal increment measured along the shaft axis. Heat maps were also generated for cortical thickness and surface curvature. The results demonstrate that a whole bone approach to analysis of cross-sectional geometry is more desirable where possible, as there is a continuous pattern of variation along the shaft. It is also possible to discriminate very young individuals and adolescents from other groups by relative cortical thickness, and also by periosteal surface curvature.


Assuntos
Úmero , Adolescente , Humanos , Anatomia Comparada , Exercício Físico
3.
R Soc Open Sci ; 5(3): 171836, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29657790

RESUMO

In evolutionary biomechanics it is often considered that gaits should evolve to minimize the energetic cost of travelling a given distance. In gait simulation this goal often leads to convincing gait generation. However, as the musculoskeletal models used get increasingly sophisticated, it becomes apparent that such a single goal can lead to extremely unrealistic gait patterns. In this paper, we explore the effects of requiring adequate lateral stability and show how this increases both energetic cost and the realism of the generated walking gait in a high biofidelity chimpanzee musculoskeletal model. We also explore the effects of changing the footfall sequences in the simulation so it mimics both the diagonal sequence walking gaits that primates typically use and also the lateral sequence walking gaits that are much more widespread among mammals. It is apparent that adding a lateral stability criterion has an important effect on the footfall phase relationship, suggesting that lateral stability may be one of the key drivers behind the observed footfall sequences in quadrupedal gaits. The observation that single optimization goals are no longer adequate for generating gait in current models has important implications for the use of biomimetic virtual robots to predict the locomotor patterns in fossil animals.

4.
PeerJ ; 5: e3416, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28652932

RESUMO

This paper uses X-ray computed tomography to track the mechanical response of a vertebrate (Barnacle goose) long bone subjected to an axial compressive load, which is increased gradually until failure. A loading rig was mounted in an X-ray computed tomography system so that a time-lapse sequence of three-dimensional (3D) images of the bone's internal (cancellous or trabecular) structure could be recorded during loading. Five distinct types of deformation mechanism were observed in the cancellous part of the bone. These were (i) cracking, (ii) thinning (iii) tearing of cell walls and struts, (iv) notch formation, (v) necking and (vi) buckling. The results highlight that bone experiences brittle (notch formation and cracking), ductile (thinning, tearing and necking) and elastic (buckling) modes of deformation. Progressive deformation, leading to cracking was studied in detail using digital image correlation. The resulting strain maps were consistent with mechanisms occurring at a finer-length scale. This paper is the first to capture time-lapse 3D images of a whole long bone subject to loading until failure. The results serve as a unique reference for researchers interested in how bone responds to loading. For those using computer modelling, the study not only provides qualitative information for verification and validation of their simulations but also highlights that constitutive models for bone need to take into account a number of different deformation mechanisms.

5.
Biol Open ; 3(7): 656-68, 2014 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-24972869

RESUMO

Obtaining quantitative data describing the movements of animals is an essential step in understanding their locomotor biology. Outside the laboratory, measuring animal locomotion often relies on video-based approaches and analysis is hampered because of difficulties in calibration and often the limited availability of possible camera positions. It is also usually restricted to two dimensions, which is often an undesirable over-simplification given the essentially three-dimensional nature of many locomotor performances. In this paper we demonstrate a fully three-dimensional approach based on 3D photogrammetric reconstruction using multiple, synchronised video cameras. This approach allows full calibration based on the separation of the individual cameras and will work fully automatically with completely unmarked and undisturbed animals. As such it has the potential to revolutionise work carried out on free-ranging animals in sanctuaries and zoological gardens where ad hoc approaches are essential and access within enclosures often severely restricted. The paper demonstrates the effectiveness of video-based 3D photogrammetry with examples from primates and birds, as well as discussing the current limitations of this technique and illustrating the accuracies that can be obtained. All the software required is open source so this can be a very cost effective approach and provides a methodology of obtaining data in situations where other approaches would be completely ineffective.

7.
Proc Biol Sci ; 274(1626): 2711-6, 2007 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-17711833

RESUMO

Maximum running speed is an important locomotor parameter for many animals-predators as well as prey-and is thus of interest to palaeobiologists wishing to reconstruct the behavioural ecology of extinct species. A variety of approaches have been tried in the past including anatomical comparisons, bone scaling and strength, safety factors and ground reaction force analyses. However, these approaches are all indirect and an alternative approach is to create a musculoskeletal model of the animal and see how fast it can run. The major advantage of this approach is that all assumptions about the animal's morphology and physiology are directly addressed, whereas the exact same assumptions are hidden in the indirect approaches. In this paper, we present simple musculoskeletal models of three extant and five extinct bipedal species. The models predict top speed in the extant species with reasonably good agreement with accepted values, so we conclude that the values presented for the five extinct species are reasonable predictions given the modelling assumptions made. Improved musculoskeletal models and better estimates of soft tissue parameters will produce more accurate values. Limited sensitivity analysis is performed on key muscle parameters but there is considerable scope for extending this in the future.


Assuntos
Evolução Biológica , Dinossauros/fisiologia , Robótica , Corrida/fisiologia , Animais , Marcha , Modelos Biológicos
8.
Ann Anat ; 186(1): 89-95, 2004 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-14994917

RESUMO

Biomechanical modelling has become a very popular technique for investigating functional anatomy. Modern computer simulation packages make producing such models straightforward and it is tempting to take the results produced at face value. However the predictions of a simulation are only valid when both the model and the input parameters are accurate and little work has been done to verify this. In this paper a model of the human jaw is produced and a sensitivity analysis is performed to validate the results. The model is built using the ADAMS multibody dynamic simulation package incorporating the major occlusive muscles of mastication (temporalis, masseter, medial and lateral pterygoids) as well as a highly mobile temporomandibular joint. This model is used to predict the peak three-dimensional bite forces at each teeth location, joint reaction forces, and the contributions made by each individual muscle. The results for occlusive bite-force (1080N at M1) match those previously published suggesting the model is valid. The sensitivity analysis was performed by sampling the input parameters from likely ranges and running the simulation many times rather than using single, best estimate values. This analysis shows that the magnitudes of the peak retractive forces on the lower teeth were highly sensitive to the chosen origin (and hence fibre direction) of the temporalis and masseter muscles as well as the laxity of the TMJ. Peak protrusive force was also sensitive to the masseter origin. These result shows that the model is insufficiently complex to estimate these values reliably although the much lower sensitivity values obtained for the bite forces in the other directions and also for the joint reaction forces suggest that these predictions are sound. Without the sensitivity analysis it would not have been possible to identify these weaknesses which strongly supports the use of sensitivity analysis as a validation technique for biomechanical modelling.


Assuntos
Força de Mordida , Anatomia/métodos , Fenômenos Biomecânicos/métodos , Músculos Faciais/anatomia & histologia , Músculos Faciais/fisiologia , Humanos , Modelos Biológicos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Estresse Mecânico , Articulação Temporomandibular/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...