Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Metabolites ; 12(11)2022 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-36422293

RESUMO

Glioblastoma multiforme (GBM) is one of the most common aggressive, resistant, and invasive primary brain tumors that share neurodegenerative actions, resembling many neurodegenerative diseases. Although multiple conventional approaches, including chemoradiation, are more frequent in GBM therapy, these approaches are ineffective in extending the mean survival rate and are associated with various side effects, including neurodegeneration. This review proposes an alternative strategy for managing GBM and neurodegeneration by targeting heat shock protein 90 (Hsp90). Hsp90 is a well-known molecular chaperone that plays essential roles in maintaining and stabilizing protein folding to degradation in protein homeostasis and modulates signaling in cancer and neurodegeneration by regulating many client protein substrates. The therapeutic benefits of Hsp90 inhibition are well-known for several malignancies, and recent evidence highlights that Hsp90 inhibitors potentially inhibit the aggressiveness of GBM, increasing the sensitivity of conventional treatment and providing neuroprotection in various neurodegenerative diseases. Herein, the overview of Hsp90 modulation in GBM and neurodegeneration progress has been discussed with a summary of recent outcomes on Hsp90 inhibition in various GBM models and neurodegeneration. Particular emphasis is also given to natural Hsp90 inhibitors that have been evidenced to show dual protection in both GBM and neurodegeneration.

2.
Comput Biol Chem ; 90: 107414, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33191109

RESUMO

Traditional vascular endothelial growth factor receptor 2 (VEGFR-2) inhibitors can manage angiogenesis; however, severe toxicity and resistance limit their long-term applications in clinical therapy. Shikonin (SHK) and its derivatives could be promising to inhibit the VEGFR-2 mediated angiogenesis, as they are reported to bind in the catalytic kinase domain with low affinity. However, the detailed molecular insights and binding dynamics of these natural inhibitors are unknown, which is crucial for potential SHK based lead design. Therefore, the present study employed molecular modeling and simulations techniques to get insight into the binding behaviors of SHK and its two derivates, ß-hydroxyisovalerylshikonin (ß-HIVS) and acetylshikonin (ACS). Here the intermolecular interactions between protein and ligands were studied by induced fit docking approach, which were further evaluated by treating QM/MM (quantum mechanics/molecular mechanics) and molecular dynamics (MD) simulation. The result showed that the naphthazarin ring of the SHK derivates is vital for strong binding to the catalytic domain; however, the binding stability can be modulated by the side chain modification. Because of having electrostatic potential, this ring makes essential interactions with the DFG (Asp1046 and Phe1047) motif and also allows interacting with the allosteric binding site. Taken together, the studies will advance our knowledge and scope for the development of new selective VEGFR-2 inhibitors based on SHK and its analogs.


Assuntos
Teoria da Densidade Funcional , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Naftoquinonas/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/antagonistas & inibidores , Sítios de Ligação/efeitos dos fármacos , Humanos , Ligantes , Naftoquinonas/química , Inibidores de Proteínas Quinases/química , Eletricidade Estática , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...