Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Biogerontology ; 24(1): 111-136, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36478541

RESUMO

The effects during healthy aging of the tetrodotoxin-resistant voltage-gated sodium channel 1.8 (Nav1.8), the acid-sensing ion channel-3 (ASIC3), the purinergic-receptor 2X3 (P2X3) and transient receptor potential of melastatin-8 (TRPM8) on responses to non-noxious stimuli are poorly understood. These effects will influence the transferability to geriatric subjects of findings obtained using young animals. To evaluate the involvement of these functional markers in mechanical and cold sensitivity to non-noxious stimuli and their underlying mechanisms, we used a combination of immunohistochemistry and quantitation of immunostaining in sub-populations of neurons of the dorsal root ganglia (DRG), behavioral tests, pharmacological interventions and Western-blot in healthy male Wistar rats from 3 to 24 months of age. We found significantly decreased sensitivity to mechanical and cold stimuli in geriatric rats. These behavioural alterations occurred simultaneously with differing changes in the expression of Nav1.8, ASIC3, P2X3 and TRPM8 in the DRG at different ages. Using pharmacological blockade in vivo we demonstrated the involvement of ASIC3 and P2X3 in normal mechanosensation and of Nav1.8 and ASIC3 in cold sensitivity. Geriatric rats also exhibited reductions in the number of A-like large neurons and in the proportion of peptidergic to non-peptidergic neurons. The changes in normal sensory physiology in geriatric rats we report here strongly support the inclusion of aged rodents as an important group in the design of pre-clinical studies evaluating pain treatments.


Assuntos
Envelhecimento Saudável , Canais de Cátion TRPM , Ratos , Masculino , Animais , Canais Iônicos Sensíveis a Ácido/metabolismo , Ratos Sprague-Dawley , Ratos Wistar , Células Receptoras Sensoriais/metabolismo , Canais de Cátion TRPM/metabolismo
2.
J Neurochem ; 152(6): 675-696, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31386177

RESUMO

Neuropathic and inflammatory pain results from cellular and molecular changes in dorsal root ganglion (DRG) neurons. The type-2 receptor for Angiotensin-II (AT2R) has been involved in this type of pain. However, the underlying mechanisms are poorly understood, including the role of the type-1 receptor for Angiotensin-II (AT1R). Here, we used a combination of immunohistochemistry and immunocytochemistry, RT-PCR and in vitro and in vivo pharmacological manipulation to examine how cutaneous inflammation affected the expression of AT1R and AT2R in subpopulations of rat DRG neurons and studied their impact on inflammation-induced neuritogenesis. We demonstrated that AT2R-neurons express C- or A-neuron markers, primarily IB4, trkA, and substance-P. AT1R expression was highest in small neurons and co-localized significantly with AT2R. In vitro, an inflammatory soup caused significant elevation of AT2R mRNA, whereas AT1R mRNA levels remained unchanged. In vivo, we found a unique pattern of change in the expression of AT1R and AT2R after cutaneous inflammation. AT2R increased in small neurons at 1 day and in medium size neurons at 4 days. Interestingly, cutaneous inflammation increased AT1R levels only in large neurons at 4 days. We found that in vitro and in vivo AT1R and AT2R acted co-operatively to regulate DRG neurite outgrowth. In vivo, AT2R inhibition impacted more on non-peptidergic C-neurons neuritogenesis, whereas AT1R blockade affected primarily peptidergic nerve terminals. Thus, cutaneous-induced inflammation regulated AT1R and AT2R expression and function in different DRG neuronal subpopulations at different times. These findings must be considered when targeting AT1R and AT2R to treat chronic inflammatory pain. Cover Image for this issue: doi: 10.1111/jnc.14737.


Assuntos
Dermatite/fisiopatologia , Receptor Tipo 1 de Angiotensina/fisiologia , Receptor Tipo 2 de Angiotensina/fisiologia , Células Receptoras Sensoriais/fisiologia , Animais , Células Cultivadas , Dermatite/etiologia , Feminino , Adjuvante de Freund/administração & dosagem , Gânglios Espinais/citologia , Neuritos/fisiologia , Dor/fisiopatologia , Ratos , Ratos Wistar , Receptor Tipo 1 de Angiotensina/análise , Receptor Tipo 2 de Angiotensina/análise , Células Receptoras Sensoriais/química , Pele/inervação
3.
Peptides ; 113: 1-10, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30590076

RESUMO

The Neuropeptide EI (NEI, glutamic acid- isoleucine amide) participates in neuroendocrine function. Previously we demonstrated that NEI concentration is regulated by thyroid hormones in discrete hypothalamic areas in rats. We observed that the thyroid status affects the dopaminergic regulation of the pituitary hormones. In this study we explored possible interactions between NEI and tyrosine hydroxylase (TH) containing elements in selected hypothalamic areas of male rats. Neuronal somas, terminals and boutons were assessed by confocal microscopy, in hypo- and hyperthyroid animals. We observed a remodeling of the contacts between the TH and NEI immunoreactive elements in the incerto-hypothalamic area (IHy, also known as rostromedial zona incerta) according to thyroid function. However, in the dorsolateral zone of the peduncular part of the lateral hypothalamus (DL-PLH) the thyroid hormones affect the dendritic trees of the neurons without perturbing the overall NEI/TH contacts. Also, we demonstrated that TRH Receptor 1 (TRH-R1) is colocalized in NEI immunoreactive neurons in the peduncular part of the lateral hypothalamus (PLH) and NEI precursor mRNA expression increased by hypothyroidism indicating that NEI neurons are responsive to the feedback mechanisms of the Hypothalamic Pituitary-Thyroid Axis (HPT). In conclusion, the hypothyroid status seems to increase the interactions between the NEI neurons and the dopaminergic pathways while hyperthyroidism either decreases or displays no effects. Altogether these observations support the participation of the IHy and PLH NEI as a modulating component of the HPT suggesting that altered neuroendocrine, behavioral and cognitive dysfunctions induced by dysthyroidism could be in part mediated by NEI.


Assuntos
Hipertireoidismo/metabolismo , Hipotálamo/metabolismo , Hipotireoidismo/metabolismo , Plasticidade Neuronal , Oligopeptídeos , Tirosina 3-Mono-Oxigenase , Animais , Hipertireoidismo/enzimologia , Hipertireoidismo/fisiopatologia , Hipotálamo/enzimologia , Hipotálamo/fisiopatologia , Hipotireoidismo/enzimologia , Hipotireoidismo/fisiopatologia , Masculino , Neurônios/enzimologia , Neurônios/metabolismo , Neurônios/fisiologia , Ratos , Ratos Wistar
4.
PLoS One ; 9(7): e102056, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25032984

RESUMO

In this study we examined cerebellar alterations in a neonatal rat model of hypoxic-ischemic brain injury with or without hypoxic preconditioning (Pc). Between postnatal days 7 and 15, the cerebellum is still undergoing intense cellular proliferation, differentiation and migration, dendritogenesis and synaptogenesis. The expression of glutamate decarboxylase 1 (GAD67) and the differentiation factor NeuroD1 were examined as markers of Purkinje and granule cells, respectively. We applied quantitative immunohistochemistry to sagittal cerebellar slices, and Western blot analysis of whole cerebella obtained from control (C) rats and rats submitted to Pc, hypoxia-ischemia (L) and a combination of both treatments (PcL). We found that either hypoxia-ischemia or Pc perturbed the granule cells in the posterior lobes, affecting their migration and final placement in the internal granular layer. These effects were partially attenuated when the Pc was delivered prior to the hypoxia-ischemia. Interestingly, whole nuclear NeuroD1 levels in Pc animals were comparable to those in the C rats. However, a subset of Purkinje cells that were severely affected by the hypoxic-ischemic insult--showing signs of neuronal distress at the levels of the nucleus, cytoplasm and dendritic arborization--were not protected by Pc. A monoclonal antibody specific for GAD67 revealed a three-band pattern in cytoplasmic extracts from whole P15 cerebella. A ∼110 kDa band, interpreted as a potential homodimer of a truncated form of GAD67, was reduced in Pc and L groups while its levels were close to the control animals in PcL rats. Additionally we demonstrated differential glial responses depending on the treatment, including astrogliosis in hypoxiated cerebella and a selective effect of hypoxia-ischemia on the vimentin-immunolabeled intermediate filaments of the Bergmann glia. Thus, while both glutamatergic and GABAergic cerebellar neurons are compromised by the hypoxic-ischemic insult, the former are protected by a preconditioning hypoxia while the latter are not.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/biossíntese , Glutamato Descarboxilase/biossíntese , Hipóxia-Isquemia Encefálica/patologia , Precondicionamento Isquêmico , Células de Purkinje/metabolismo , Animais , Animais Recém-Nascidos/fisiologia , Anticorpos Monoclonais/imunologia , Biomarcadores/análise , Diferenciação Celular , Movimento Celular , Proliferação de Células , Cerebelo/lesões , Cerebelo/patologia , Feminino , Neurônios GABAérgicos/patologia , Glutamato Descarboxilase/imunologia , Masculino , Neuroglia/patologia , Ratos , Ratos Endogâmicos WKY
5.
Neuroendocrinology ; 99(3-4): 204-18, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25011732

RESUMO

BACKGROUND/AIMS: Few studies address the long-term consequences of perinatal hypoxia (H), a frequent birth complication. Previously we described advanced reproductive senescence (premature loss of regular cyclicity) in female rats subjected to perinatal H or H plus unilateral ischemia (HI) associated with changes in the hypothalamic expression of estrogen and opioid receptors. Our aim is to explore whether hypothalamic inflammation and oxidative damage mediate these reproductive alterations. METHODS: Female rats were subjected on postnatal day (PND) 7 to H (6.5% O2 for 50 min) or HI (H + right carotid artery ligature) and inflammation/oxidative damage markers, such as iNOS, nNOS, insulin-like growth factor (IGF) system expression, glial reaction and macrophage invasion in the medial basal hypothalamus-preoptic area (GFAP Western blot and immunohistochemistry, ED1 immunohistochemistry), were determined. The effect of antioxidant treatment with vitamin E (VE; 1.5 mg/rat on PND 4, 6 and 8) was also explored. RESULTS: No significant cellular inflammatory reactions were observed although GFAP protein was significantly increased at early times after injury. Forty-eight hours after injury iNOS, nNOS and IGF-I mRNA decreased in the HI group, and nNOS in the H group. IGFBP-3 mRNA increased in HI rats at 48 h and 30 days, while it fell at 7 days postinjury in both groups. VE treatment prevented the effects of HI on oxidation/inflammation markers, but did not prevent the premature onset of reproductive senescence or the altered hormone receptors expression. CONCLUSION: These results suggest that the oxidative and inflammatory damage caused by perinatal H or HI may not be responsible for the late-onset reproductive abnormalities.


Assuntos
Envelhecimento/efeitos dos fármacos , Antioxidantes/uso terapêutico , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Hipóxia-Isquemia Encefálica/tratamento farmacológico , Reprodução/efeitos dos fármacos , Vitamina E/uso terapêutico , Animais , Animais Recém-Nascidos , Astrócitos/metabolismo , Astrócitos/patologia , Encéfalo/metabolismo , Encéfalo/patologia , Modelos Animais de Doenças , Ciclo Estral , Feminino , Lateralidade Funcional , Regulação da Expressão Gênica no Desenvolvimento/genética , Hormônios/sangue , Hipóxia-Isquemia Encefálica/patologia , Hipóxia-Isquemia Encefálica/fisiopatologia , Macrófagos/metabolismo , Macrófagos/patologia , Gravidez , Ratos , Ratos Sprague-Dawley
6.
Neuropeptides ; 45(1): 69-76, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21146214

RESUMO

Angiotensin II (Ang II) binds and activates two major receptors subtypes, namely AT(1) and AT(2). In the fetus, AT(2) receptors predominate in all tissues and decline shortly after birth, being restricted to a few organs including brain. Interpretation of the function of Ang II in the cerebellum requires a thorough understanding of the localization of Ang II receptors. The aim of the present paper is to evaluate the localization of Ang II AT(2) receptors in the Purkinje cell (PC) layer during development. By binding autoradiography, a clear complementary pattern of AT(1) and AT(2) binding labeled by [(125)I] Ang II was observed in young rats within the cerebellar cortex. This pattern was present at the stages P8 and P15, but not at P30 and P60, where AT(2) binding appears low and superimposed with AT(1) binding. We demonstrate that AT(2) antibodies recognized postmitotic Purkinje cells, labeling the somata of these cells at all the stages studied, from P8 to P60, suggesting that PCs express these receptors from early stages of development until adulthood. In P8 and P15 animals, we observed a clear correspondence between immunolabeling and the well-defined layer observed by binding autoradiography. Confocal analysis allowed us to discard the co-localization of AT(2) receptors with glial fibrillary acidic protein (GFAP), a glial marker. Double immunolabeling allowed us to demonstrate the co-localization of Ang II AT(2) receptors with zebrin II, a specific PC marker. Since PCs are the sole output signal from the cerebellar cortex and considering the role of cerebellum in movement control, the specific receptor localization suggests a potential role for Ang II AT(2) receptors in the cerebellar function.


Assuntos
Cerebelo/citologia , Cerebelo/crescimento & desenvolvimento , Células de Purkinje/metabolismo , Receptor Tipo 2 de Angiotensina/metabolismo , Angiotensina II/metabolismo , Animais , Autorradiografia , Cerebelo/metabolismo , Masculino , Ratos , Ratos Wistar
7.
Brain Res ; 1214: 73-83, 2008 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-18457817

RESUMO

Perinatal hypoxia is a frequent birth complication, and although its early consequences on brain development have been well studied, few studies address any long-term effects. Postnatal insults producing small disturbances in endocrine function can have marked and long-lasting effects. In the present work we studied the effects of two types of perinatal brain injury: global hypoxia (H, 6.5% O2 for 50 min) and hypoxia plus ischemia (HI, ligature of the right carotid artery) on female rat reproductive performance and expression of mediobasal hypothalamus-preoptic area (MBH-PO) estrogen, progesterone and micro-opioid receptors at different times after injury, measuring the mRNA (by semiquantitative RT-PCR) and protein (by Western blot). H or HI advanced approximately 3 months after the appearance of blunted preovulatory LH surges and cyclic irregularities (prolonged estrus) characteristic of the early stages of reproductive senescence. 48 h after H or HI we observed decreases in ERbeta, microOR and PR (only in the H group) mRNAs and in total ER and microOR proteins, followed by increased PR levels (mRNA and protein) 7 days post-injury and by increased microOR protein and ERbeta mRNA in the H group and ERalpha, ERbeta and microOR mRNAs and ER protein in the HI group 30 days post-injury. Thus, an episode of hypoxia suffered during early postnatal life induces premature reproductive senescence on the female rats, accompanied by early changes in some MBH-PO hormone receptors (microOR, ER and PR), whose expression is intimately involved in the regulation of gonadotropin secretion and female sexual cyclicity.


Assuntos
Estrogênios/metabolismo , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Hipóxia/fisiopatologia , Progesterona/metabolismo , Receptores Opioides mu/metabolismo , Reprodução/fisiologia , Fatores Etários , Análise de Variância , Animais , Animais Recém-Nascidos , Estrogênios/genética , Feminino , Lateralidade Funcional , Hipóxia/metabolismo , Isquemia/metabolismo , Isquemia/fisiopatologia , Progesterona/genética , RNA Mensageiro/metabolismo , Ratos , Ratos Sprague-Dawley , Receptores Opioides mu/genética
8.
Eur J Pharmacol ; 588(1): 114-23, 2008 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-18495111

RESUMO

Evidence suggests that Angiotensin II plays an important role in the complex process of renal organogenesis. Rat kidney organogenesis starts between E13-14 and lasts up to 2 weeks after birth. The present study demonstrates histologic modifications and changes in receptor localisation in animals born from mothers treated with Angiotensin II, Losartan or PD123319 (1.0 mg/kg/day) during late pregnancy. Angiotensin II-treated animals exhibited very well developed tubules in the renal medulla in coincidence with higher AT(1) binding. Control animals exhibited angiotensin AT(2) binding in the outer stripe of the outer medulla, while in the Angiotensin II-treated animals binding was observed to the inner stripe. In Angiotensin II-treated 1-week-old animals, the nephrogenic zone contained fewer immature structures, and more developed collecting tubules than control animals. Treatment with Losartan resulted in severe renal abnormalities. For newborn and 1-week-old animals, glomeruli exhibited altered shape and enlarged Bowman spaces, in concordance with a loss of [(125)I]Angiotensin II binding in the cortex. Blockade with PD123319 led to an enlarged nephrogenic zone with increased number of immature glomeruli, and less glomeruli in the juxtamedullary area. Autoradiography showed a considerable loss of AT(1) binding in the kidney cortex of PD123319-treated animals at both ages. The present results show for the first time histomorphological and receptor localisation alterations following treatment with low doses of Losartan and PD123319 during pregnancy. These observations confirm previous assumptions that in the developing kidney Angiotensin II exerts stimulatory effects through AT(1) receptors that might be counterbalanced by angiotensin AT(2) receptors.


Assuntos
Anormalidades Induzidas por Medicamentos/patologia , Bloqueadores do Receptor Tipo 1 de Angiotensina II/toxicidade , Bloqueadores do Receptor Tipo 2 de Angiotensina II , Rim/anormalidades , Prenhez/fisiologia , Envelhecimento/metabolismo , Angiotensina II/antagonistas & inibidores , Angiotensina II/farmacologia , Animais , Animais Recém-Nascidos , Autorradiografia , Feminino , Imidazóis/toxicidade , Rim/patologia , Glomérulos Renais/efeitos dos fármacos , Glomérulos Renais/patologia , Losartan/toxicidade , Gravidez , Piridinas/toxicidade , Ratos , Ratos Wistar , Receptor Tipo 1 de Angiotensina/metabolismo , Receptor Tipo 2 de Angiotensina/metabolismo , Sistema Renina-Angiotensina/efeitos dos fármacos , Sistema Renina-Angiotensina/fisiologia
9.
Synapse ; 61(3): 124-37, 2007 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-17146769

RESUMO

We assessed immunoreactivity (IR) in the cerebral cortex (CC), hippocampus (Hipp), and striatum (ST) of a growth-associated protein, GAP-43, and of proteins of the synaptic vesicle fusion complex: VAMP-2, Syntaxin-1, and SNAP-25 (SNARE proteins) throughout postnatal development of rats after submitting the animals to acute global postnatal hypoxia (6.5% O(2), 70 min) at postnatal day 4 (PND4). In the CC only the IR of the SNARE protein SNAP-25 increased significantly with age. The hypoxic animals showed the same pattern of IR for SNAP-25, although with lower levels at PND11, and also a significant increase of VAMP-2. SNAP-25 (control): PND11 P < 0.001 vs. PND18, 25, and 40, SNAP-25 (hypoxic): P < 0.001 vs. PND18, 25, and 40; VAMP-2 (hypoxic): P < 0.05 PND11 vs. PND18, and P < 0.01 vs. PND25 and PND40; one-way ANOVA and Bonferroni post-test. In the Hipp, SNAP-25 and syntaxin-1 increased significantly with age, reaching a plateau at PND25 through PND40 in control animals (one-way ANOVA: syntaxin-1: P = 0.043; Bonferroni: NS; SNAP-25: P = 0.013; Bonferroni: P < 0.01 PND11 vs. PND40). Hypoxic rats showed higher levels of significance in the one-way ANOVA than controls (syntaxin-1: P = 0.009; Bonferroni: P < 0.05 PND11 vs. PND25 and P < 0.001 PND11 vs. PND40). In the ST, GAP-43 differed significantly among hypoxic and control animals and the two-way ANOVA revealed significant differences with age (F = 3.23; P = 0.037) and treatment (F = 4.84; P = 0.036). VAMP-2 expression also reached statistical significance when comparing control and treated animals (F = 6.25, P = 0.018) without changes regarding to age. Elevated plus maze test performed at PND40 indicated a lower level of anxiety in the hypoxic animals. At adulthood (12 weeks) learning, memory and locomotor abilities were identical in both groups of animals. With these results, we demonstrate that proteins of the presynaptic structures of the ST are sensitive to acute disruption of homeostatic conditions, such as a temporary decrease of the O(2) concentration. Modifications in the activity of these proteins could contribute to the long term altered responses to stress due to acute hypoxic insult in the neonatal period.


Assuntos
Corpo Estriado/metabolismo , Proteína GAP-43/metabolismo , Hipóxia Encefálica/metabolismo , Regulação para Cima/fisiologia , Doença Aguda , Envelhecimento/fisiologia , Animais , Animais Recém-Nascidos , Transtornos de Ansiedade/etiologia , Transtornos de Ansiedade/metabolismo , Transtornos de Ansiedade/fisiopatologia , Câmaras de Exposição Atmosférica , Córtex Cerebral/metabolismo , Córtex Cerebral/fisiopatologia , Corpo Estriado/fisiopatologia , Modelos Animais de Doenças , Hipocampo/metabolismo , Hipocampo/fisiopatologia , Hipóxia Encefálica/fisiopatologia , Imuno-Histoquímica , Transtornos da Memória/metabolismo , Transtornos da Memória/fisiopatologia , Ratos , Ratos Sprague-Dawley , Estresse Fisiológico/metabolismo , Estresse Fisiológico/fisiopatologia , Proteína 25 Associada a Sinaptossoma/metabolismo , Sintaxina 1/metabolismo , Proteína 2 Associada à Membrana da Vesícula/metabolismo
10.
Exp Neurol ; 197(2): 391-8, 2006 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-16293246

RESUMO

The neocortex and the striatum are the brain regions most known to be particularly vulnerable to acute insults like hypoxia or ischemia. In this work, we assess the possibility of cellular damage to the substantia nigra (SN) after hypoxia-reoxygenation in the new born rat. The aim of the present paper was to evaluate the expression of growth factor IGF-I, and growth factor binding proteins IGFBP-3 and IGFBP-5 genes and induction of NOS family members (nNOS, eNOS and iNOS) and TNF-alpha genes together with glia activation, in the SN at 5 and 48 h after severe hypoxia in the 7 day-old rat, a model for the term human fetus. At early time, while IGFs remain unchanged, we found a transient increase in eNOS and nNOS. Two days after the injury, nNOS expression remained high, iNOS and TNF-alpha increased and also GFAP protein expression was observed together with a profusion of reactive astrocytes distributed throughout the SN. This study on the acute effects of hypoxia on the developing brain provides additional insights into the vulnerability of the SN, a brain region involved in neurodegenerative pathologies.


Assuntos
Hipóxia/metabolismo , Hipóxia/patologia , Inflamação/metabolismo , Substância Negra/metabolismo , Animais , Animais Recém-Nascidos , Western Blotting/métodos , Citoesqueleto/metabolismo , Expressão Gênica/fisiologia , Proteína Glial Fibrilar Ácida/metabolismo , Hipóxia/complicações , Imuno-Histoquímica/métodos , Inflamação/etiologia , Proteína 3 de Ligação a Fator de Crescimento Semelhante à Insulina/metabolismo , Proteína 5 de Ligação a Fator de Crescimento Semelhante à Insulina/metabolismo , Fator de Crescimento Insulin-Like I/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo , RNA Mensageiro/biossíntese , Ratos , Ratos Sprague-Dawley , Reação em Cadeia da Polimerase Via Transcriptase Reversa/métodos , Substância Negra/crescimento & desenvolvimento , Substância Negra/patologia , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...