Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Anim Sci ; 99(3)2021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-33677580

RESUMO

Ruminants are major producers of meat and milk, thus managing their reproductive potential is a key element in cost-effective, safe, and efficient food production. Of particular concern, defects in male germ cells and female germ cells may lead to significantly reduced live births relative to fertilization. However, the underlying molecular drivers of these defects are unclear. Small noncoding RNAs, such as piRNAs and miRNAs, are known to be important regulators of germ-cell physiology in mouse (the best-studied mammalian model organism) and emerging evidence suggests that this is also the case in a range of ruminant species, in particular bovine. Similarities exist between mouse and bovids, especially in the case of meiotic and postmeiotic male germ cells. However, fundamental differences in small RNA abundance and metabolism between these species have been observed in the female germ cell, differences that likely have profound impacts on their physiology. Further, parentally derived small noncoding RNAs are known to influence early embryos and significant species-specific differences in germ-cell born small noncoding RNAs have been observed. These findings demonstrate the mouse to be an imperfect model for understanding germ-cell small noncoding RNA biology in ruminants and highlight the need to increase research efforts in this underappreciated aspect of animal reproduction.


Assuntos
MicroRNAs , Pequeno RNA não Traduzido , Animais , Bovinos/genética , Feminino , Masculino , Camundongos , RNA Interferente Pequeno , Reprodução/genética , Roedores , Ruminantes/genética
2.
Sci Rep ; 10(1): 11536, 2020 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-32665638

RESUMO

Adenosine-to-inosine RNA editing, a fundamental RNA modification, is regulated by adenosine deaminase (AD) domain containing proteins. Within the testis, RNA editing is catalyzed by ADARB1 and is regulated in a cell-type dependent manner. This study examined the role of two testis-specific AD domain proteins, ADAD1 and ADAD2, on testis RNA editing and male germ cell differentiation. ADAD1, previously shown to localize to round spermatids, and ADAD2 had distinct localization patterns with ADAD2 expressed predominantly in mid- to late-pachytene spermatocytes suggesting a role for both in meiotic and post-meiotic germ cell RNA editing. AD domain analysis showed the AD domain of both ADADs was likely catalytically inactive, similar to known negative regulators of RNA editing. To assess the impact of Adad mutation on male germ cell RNA editing, CRISPR-induced alleles of each were generated in mouse. Mutation of either Adad resulted in complete male sterility with Adad1 mutants displaying severe teratospermia and Adad2 mutant germ cells unable to progress beyond round spermatid. However, mutation of neither Adad1 nor Adad2 impacted RNA editing efficiency or site selection. Taken together, these results demonstrate ADAD1 and ADAD2 are essential regulators of male germ cell differentiation with molecular functions unrelated to A-to-I RNA editing.


Assuntos
Adenosina Desaminase/genética , Adenosina Desaminase/metabolismo , Fertilidade , Testículo/metabolismo , Alelos , Animais , Anticorpos/química , Catálise , Diferenciação Celular , Células Germinativas/citologia , Infertilidade Masculina/genética , Masculino , Meiose , Camundongos , Mutação , Fenótipo , Domínios Proteicos , Edição de RNA , Proteínas de Ligação a RNA/metabolismo , Espermátides/metabolismo , Espermatócitos/metabolismo , Espermatogênese/genética
3.
J Vis Exp ; (157)2020 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-32202522

RESUMO

Quantifying differences in mRNA abundance is a classic approach to understand the impact of a given gene mutation on cell physiology. However, characterizing differences in the translatome (the whole of translated mRNAs) provides an additional layer of information particularly useful when trying to understand the function of RNA regulating or binding proteins. A number of methods for accomplishing this have been developed, including ribosome profiling and polysome analysis. However, both methods carry significant technical challenges and cannot be applied to specific cell populations within a tissue unless combined with additional sorting methods. In contrast, the RiboTag method is a genetic-based, efficient, and technically straightforward alternative that allows the identification of ribosome associated RNAs from specific cell populations without added sorting steps, provided an applicable cell-specific Cre driver is available. This method consists of breeding to generate the genetic models, sample collection, immunoprecipitation, and downstream RNA analyses. Here, we outline this process in adult male mouse germ cells mutant for an RNA binding protein required for male fertility. Special attention is paid to considerations for breeding with a focus on efficient colony management and the generation of correct genetic backgrounds and immunoprecipitation in order to reduce background and optimize output. Discussion of troubleshooting options, additional confirmatory experiments, and potential downstream applications is also included. The presented genetic tools and molecular protocols represent a powerful way to describe the ribosome-associated RNAs of specific cell populations in complex tissues or in systems with aberrant mRNA storage and translation with the goal of informing on the molecular drivers of mutant phenotypes.


Assuntos
Imunoprecipitação/métodos , RNA Mensageiro/análise , RNA Ribossômico/análise , Espermatozoides/metabolismo , Animais , Cruzamento , Feminino , Masculino , Camundongos , Camundongos Transgênicos , Polirribossomos/genética , RNA Ribossômico/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Proteínas Ribossômicas/genética , Proteínas Ribossômicas/metabolismo , Ribossomos/genética , Análise de Sequência de RNA/métodos
4.
Reproduction ; 159(1): 15-26, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31677600

RESUMO

The testis transcriptome is exceptionally complex. Despite its complexity, previous testis transcriptome analyses relied on a reductive method for transcript identification, thus underestimating transcriptome complexity. We describe here a more complete testis transcriptome generated by combining Tuxedo, a reductive method, and spliced-RUM, a combinatorial transcript-building approach. Forty-two percent of the expanded testis transcriptome is composed of unannotated RNAs with novel isoforms of known genes and novel genes constituting 78 and 9.8% of the newly discovered transcripts, respectively. Across tissues, novel transcripts were predominantly expressed in the testis with the exception of novel isoforms which were also highly expressed in the adult ovary. Within the testis, novel isoform expression was distributed equally across all cell types while novel genes were predominantly expressed in meiotic and post-meiotic germ cells. The majority of novel isoforms retained their protein-coding potential while most novel genes had low protein-coding potential. However, a subset of novel genes had protein-coding potentials equivalent to known protein-coding genes. Shotgun mass spectrometry of round spermatid total protein identified unique peptides from four novel genes along with seven annotated non-coding RNAs. These analyses demonstrate the testis expresses a wide range of novel transcripts that give rise to novel proteins.


Assuntos
Regulação da Expressão Gênica , Espectrometria de Massas/métodos , Proteoma/análise , Testículo/metabolismo , Transcriptoma , Sequência de Aminoácidos , Animais , Perfilação da Expressão Gênica , Masculino , Camundongos , Testículo/citologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...