Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 23(12)2022 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-35743059

RESUMO

The risk-characterization of chemicals requires the determination of repeated-dose toxicity (RDT). This depends on two main outcomes: the no-observed-adverse-effect level (NOAEL) and the lowest-observed-adverse-effect level (LOAEL). These endpoints are fundamental requirements in several regulatory frameworks, such as the Registration, Evaluation, Authorization and Restriction of Chemicals (REACH) and the European Regulation of 1223/2009 on cosmetics. The RDT results for the safety evaluation of chemicals are undeniably important; however, the in vivo tests are time-consuming and very expensive. The in silico models can provide useful input to investigate sub-chronic RDT. Considering the complexity of these endpoints, involving variable experimental designs, this non-testing approach is challenging and attractive. Here, we built eight in silico models for the NOAEL and LOAEL predictions, focusing on systemic and organ-specific toxicity, looking into the effects on the liver, kidney and brain. Starting with the NOAEL and LOAEL data for oral sub-chronic toxicity in rats, retrieved from public databases, we developed and validated eight quantitative structure-activity relationship (QSAR) models based on the optimal descriptors calculated by the Monte Carlo method, using the CORAL software. The results obtained with these models represent a good achievement, to exploit them in a safety assessment, considering the importance of organ-related toxicity.


Assuntos
Relação Quantitativa Estrutura-Atividade , Software , Animais , Simulação por Computador , Método de Monte Carlo , Nível de Efeito Adverso não Observado , Ratos
2.
Methods Mol Biol ; 2425: 291-354, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35188638

RESUMO

The assessment of skin irritation, and in particular of skin sensitization, has undergone an evolution process over the last years, pushing forward to new heights of quality and innovation. Public and commercial in silico tools have been developed for skin sensitization and irritation, introducing the possibility to simplify the evaluation process and the development of topical products within the dogma of the computational methods, representing the new doctrine in the field of risk assessment.The possibility of using in silico methods is particularly appealing and advantageous due to their high speed and low-cost results.The most widespread and popular topical products are represented by cosmetics. The European Regulation 1223/2009 on cosmetic products represents a paradigm shift for the safety assessment of cosmetics transitioning from a classical toxicological approach based on animal testing, towards a completely novel strategy, where the use of animals for toxicity testing is completely banned. In this context sustainable alternatives to animal testing need to be developed, especially for skin sensitization and irritation, two critical and fundamental endpoints for the assessment of cosmetics.The Quantitative Risk Assessment (QRA) methodology and the risk assessment using New Approach Methodologies (NAM) represent new frontiers to further improve the risk assessment process for these endpoints, in particular for skin sensitization.In this chapter we present an overview of the already existing models for skin sensitization and irritation. Some examples are presented here to illustrate tools and platforms used for the evaluation of chemicals.


Assuntos
Cosméticos , Dermatopatias , Alternativas aos Testes com Animais/métodos , Animais , Simulação por Computador , Cosméticos/toxicidade , Medição de Risco/métodos , Pele , Testes de Toxicidade
3.
Toxicology ; 468: 153111, 2022 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-35093427

RESUMO

Allergic contact dermatitis is increasingly of interest for the hazard characterization of chemicals. in vivo animal testing is usually adopted but in silico approaches are becoming the new frontier due to their swiftness and economic efficiency. Indeed, in silico models can rationalise the experimental outcomes besides having predictive ability. The aim of the present work was to explore the electrophilic chemical behaviour responsible for allergic contact dermatitis using quantitative QSAR regression models. Eight models were proposed, using an experimental LLNA dataset of 366 chemicals. Each model is unique to encode a type of electrophilic reactivity domain. The models were obtained using autocorrelation, electro-topological and atom centered fragment based on two-dimensional descriptors, which incorporated the electronic and stereochemical features of substances interacting with skin proteins to induce skin cell proliferation. Finally, simple steps were proposed to integrate the eight models for the application on the test chemicals.


Assuntos
Alérgenos/toxicidade , Dermatite Alérgica de Contato/diagnóstico , Pele/efeitos dos fármacos , Alérgenos/análise , Humanos , Modelos Lineares , Relação Quantitativa Estrutura-Atividade
4.
ALTEX ; 38(4): 565-579, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33963416

RESUMO

A new, freely available software for cosmetic products has been designed that considers the regulatory framework for cosmetics. The software allows an overall toxicological evaluation of cosmetic ingredients without the need for additional testing and, depending on the product type, it applies defined exposure scenarios to derive risk for consumers. It takes regulatory thresholds into account and uses either experimental values, if available, or predictions. Based on the exper­imental or predicted no observed adverse effect level (NOAEL), the software can define a point of departure (POD), which is used to calculate the margin of safety (MoS) of the query chemicals. The software also provides other toxico­logical properties, such as mutagenicity, skin sensitization, and the threshold of toxicological concern (TTC) to provide an overall evaluation of the potential chemical hazard. Predictions are calculated using in silico models implemented within the VEGA software. The full list of ingredients of a cosmetic product can be processed at the same time, at the effective concentrations in the product as given by the user. SpheraCosmolife is designed as a support tool for safety assessors of cosmetic products and can be used to prioritize the cosmetic ingredients or formulations according to their potential risk to consumers. The major novelty of the tool is that it wraps a series of models (some of them new) into a single, user-friendly software system.


Assuntos
Cosméticos , Simulação por Computador , Qualidade de Produtos para o Consumidor , Cosméticos/toxicidade , Nível de Efeito Adverso não Observado , Medição de Risco , Pele
5.
Molecules ; 26(7)2021 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-33808128

RESUMO

Several tons of chemicals are released every year into the environment and it is essential to assess the risk of adverse effects on human health and ecosystems. Risk assessment is expensive and time-consuming and only partial information is available for many compounds. A consolidated approach to overcome this limitation is the Threshold of Toxicological Concern (TTC) for assessment of the potential health impact and, more recently, eco-TTCs for the ecological aspect. The aim is to allow a safe assessment of substances with poor toxicological characterization. Only limited attempts have been made to integrate the human and ecological risk assessment procedures in a "One Health" perspective. We are proposing a strategy to define the Human-Biota TTCs (HB-TTCs) as concentrations of organic chemicals in freshwater preserving both humans and ecological receptors at the same time. Two sets of thresholds were derived: general HB-TTCs as preliminary screening levels for compounds with no eco- and toxicological information, and compound-specific HB-TTCs for chemicals with known hazard assessment, in terms of Predicted No effect Concentration (PNEC) values for freshwater ecosystems and acceptable doses for human health. The proposed strategy is based on freely available public data and tools to characterize and group chemicals according to their toxicological profiles. Five generic HB-TTCs were defined, based on the ecotoxicological profiles reflected by the Verhaar classes, and compound-specific thresholds for more than 400 organic chemicals with complete eco- and toxicological profiles. To complete the strategy, the use of in silico models is proposed to predict the required toxicological properties and suitable models already available on the VEGAHUB platform are listed.


Assuntos
Monitoramento Ambiental/métodos , Água Doce/química , Compostos Orgânicos , Medição de Risco , Poluentes Químicos da Água , Poluição Química da Água/prevenção & controle , Animais , Biota , Humanos
6.
Mol Divers ; 25(2): 1137-1144, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-32323128

RESUMO

The similarity is an important category in natural sciences. A measure of similarity for a group of various biochemical endpoints is suggested. The list of examined endpoints contains (1) toxicity of pesticides towards rainbow trout; (2) human skin sensitization; (3) mutagenicity; (4) toxicity of psychotropic drugs; and (5) anti HIV activity. Further applying and evolution of the suggested approach is discussed. In particular, the conception of the similarity (dissimilarity) of endpoints can play the role of a "useful bridge" between quantitative structure property/activity relationships (QSPRs/QSARs) and read-across technique.


Assuntos
Modelos Moleculares , Aminas/química , Aminas/toxicidade , Animais , Ansiolíticos/química , Ansiolíticos/toxicidade , Antidepressivos/química , Antidepressivos/toxicidade , Antipsicóticos/química , Antipsicóticos/toxicidade , Cosméticos/química , Cosméticos/toxicidade , Inibidores da Protease de HIV/química , Inibidores da Protease de HIV/farmacologia , Haptenos/química , Haptenos/toxicidade , Humanos , Dose Letal Mediana , Ensaio Local de Linfonodo , Mutagênicos/química , Mutagênicos/toxicidade , Oncorhynchus mykiss , Praguicidas/química , Praguicidas/toxicidade , Fenotiazinas/química , Fenotiazinas/toxicidade , Relação Quantitativa Estrutura-Atividade , Salmonella typhimurium/efeitos dos fármacos , Salmonella typhimurium/genética
7.
J Hazard Mater ; 385: 121638, 2020 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-31757721

RESUMO

The evaluation of genotoxicity is a fundamental part of the safety assessment of chemicals due to the relevance of the potential health effects of genotoxicants. Among the testing methods available, the in vitro micronucleus assay with mammalian cells is one of the most used and required by regulations targeting several industrial sectors such as the cosmetic industry and food-related sectors. As an alternative to the testing methods, in recent years, lots in silico methods were developed to predict the genotoxicity of chemicals, including models for the Ames mutagenicity test, the in vitro chromosomal aberrations and the in vivo micronucleus assay. We developed several in silico models for the prediction of genotoxicity as reflected by the in vitro micronucleus assay. The resulting models include both statistical and knowledge-based models. The most promising model is the one based on fragments extracted with the SARpy platform. More than 100 structural alerts were extracted, including also fragments associated with the non-genotoxic activity. The model is characterized by high accuracy and the lowest false negative rate, making this tool suitable for chemical screening according to the regulators' needs. The SARpy model will be implemented on the VEGA platform (https://www.vegahub.eu) and will be freely available.


Assuntos
Modelos Biológicos , Mutagênicos/toxicidade , Compostos Orgânicos/toxicidade , Técnicas In Vitro , Testes para Micronúcleos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...