Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Immunology ; 113(4): 413-26, 2004 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-15554919

RESUMO

There is now considerable evidence suggesting that the plasma membrane of mammalian cells is compartmentalized by functional lipid raft microdomains. These structures are assemblies of specialized lipids and proteins and have been implicated in diverse biological functions. Analysis of their protein content using proteomics and other methods revealed enrichment of signalling proteins, suggesting a role for these domains in intracellular signalling. In T lymphocytes, structure/function experiments and complementary pharmacological studies have shown that raft microdomains control the localization and function of proteins which are components of signalling pathways regulated by the T-cell antigen receptor (TCR). Based on these studies, a model for TCR phosphorylation in lipid rafts is presented. However, despite substantial progress in the field, critical questions remain. For example, it is unclear if membrane rafts represent a homogeneous population and if their structure is modified upon TCR stimulation. In the future, proteomics and the parallel development of complementary analytical methods will undoubtedly contribute in further delineating the role of lipid rafts in signal transduction mechanisms.


Assuntos
Microdomínios da Membrana/imunologia , Receptores de Antígenos de Linfócitos T/fisiologia , Humanos , Proteína Tirosina Quinase p56(lck) Linfócito-Específica/metabolismo , Modelos Imunológicos , Transdução de Sinais/imunologia
2.
Arthritis Rheum ; 50(8): 2675-84, 2004 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-15334484

RESUMO

OBJECTIVE: NF-kappaB activation is associated with several inflammatory disorders, including rheumatoid arthritis (RA), making this family of transcription factors a good target for the development of antiinflammatory treatments. Although inhibitors of the NF-kappaB pathway are currently available, their specificity has not been adequately determined. IkappaBalpha is a physiologic inhibitor of NF-kappaB and a potent repressor experimentally when expressed in a nondegradable form. We describe here a novel means for specifically regulating NF-kappaB activity in vivo by administering a chimeric molecule comprising the super-repressor IkappaBalpha (srIkappaBalpha) fused to the membrane-transducing domain of the human immunodeficiency virus Tat protein (Tat-srIkappaBalpha). METHODS: The Wistar rat carrageenan-induced pleurisy model was used to assess the effects of in vivo administration of Tat-srIkappaBalpha on leukocyte infiltration and on cytokine and chemokine production. RESULTS: Systemic administration of Tat-srIkappaBalpha diminished infiltration of leukocytes into the site of inflammation. Analysis of the recruited inflammatory cells confirmed uptake of the inhibitor and reduction of the NF-kappaB activity. These cells exhibited elevated caspase activity, suggesting that NF-kappaB is required for the survival of leukocytes at sites of inflammation. Analysis of exudates, while showing decreases in the production of the proinflammatory cytokines tumor necrosis factor alpha and interleukin-1beta, also revealed a significant increase in the production of the neutrophil chemoattractants cytokine-induced neutrophil chemoattractant 1 (CINC-1) and CINC-3 compared with controls. This result could reveal a previously unknown feedback mechanism in which infiltrating leukocytes may down-regulate local production of these chemokines. CONCLUSION: These results provide new insights into the etiology of inflammation and establish a strategy for developing novel therapeutics by regulating the signaling activity of pathways known to function in RA.


Assuntos
Apoptose/fisiologia , Proteínas I-kappa B/administração & dosagem , Inflamação/patologia , Fatores Genéricos de Transcrição/antagonistas & inibidores , Animais , Artrite Reumatoide/patologia , Carragenina , Caspase 3 , Caspases/análise , Modelos Animais de Doenças , Produtos do Gene tat , Proteínas I-kappa B/farmacologia , Inflamação/induzido quimicamente , Inflamação/fisiopatologia , Masculino , Inibidor de NF-kappaB alfa , Neutrófilos/fisiologia , Pleurisia/induzido quimicamente , Ratos , Fatores Genéricos de Transcrição/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...