Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Tsitologiia ; 49(7): 607-13, 2007.
Artigo em Russo | MEDLINE | ID: mdl-17918346

RESUMO

Long adaptation of microsporidia, a large group of fungi-related protozoa, to intracellular lifestyle has resulted in drastic minimization of a parasite cell. Thus, diversity of carbohydrates in microsporidia glycoproteins and proteoglycans is expected to be restricted by O-linked manno-oligosaccharides because three genes involved in O-mannosylation of proteins and no components of N-linked glycosylation machinery were found in genome of human pathogen Encephalitozoon cuniculi. In this study we investigated glycosylation of spore proteins of microsporidia Paranosema (Antonospora) grylli infecting crickets Gryllus bimaculatus. Using periodic acid-Shiff reagent staining we have demonstrated that some P. grylli spore proteins are highly-glycosylated. The major polar tube protein (PTP1) of 56 kDa was shown as the most intensively decorated band. The experiments with N-glycosidase F and WGA lectin did not reveal any N-glycosylated proteins in P. grylli spores. At the same time, incubation of major spore wall protein of 40 kDa (p40) with mannose specific lectin GNA resulted in specific binding that was reduced by pretreatment of the protein with mannosidases. Interestingly, in spite of PTP1 glycosylation, polar tube proteins extracted from P. grylli spores were not precipitated by GNA-agarose. Since P. grylli and E. cuniculi are distantly related, our data suggest that dramatic reduction of protein glycosylation machinery is a common feature of microsporidia.


Assuntos
Proteínas Fúngicas/metabolismo , Microsporídios/metabolismo , Animais , Western Blotting , Proteínas Fúngicas/química , Glicoproteínas/metabolismo , Glicosilação , Gryllidae/microbiologia , Peso Molecular , Esporos Fúngicos/metabolismo
2.
Tsitologiia ; 45(3): 324-9, 2003.
Artigo em Inglês | MEDLINE | ID: mdl-14520889

RESUMO

Incubation of Nosema grylli spores in alkaline--saline solution (10 mM KOH, 170 mM KCl) leads to solubilization of the major spore wall protein of 40 kDa (p40). Both the compounds of this solution are crucial for p40 solubilization. After spore incubation in 170 mM KCl no proteins were released in the medium. In contrast, 10 mM KOH causes a release of many spore proteins but only a small amount of p40. A long storage of spores (over a year) in water or 0.02% sodium azide results in a sharp decrease of p40 content. Specific polyclonal antibodies were obtained by immunization of rabbits with isolated p40. The specificity of serum was confirmed by immunoblotting. IFA showed reliable reaction on the envelopes of sporonts and sporoblasts, whereas only part of spores reacted with antibodies. This distinction may be due to changing surface antigens during spore maturation. Solubilization of p40 under alkaline conditions could be associated with spore extrusion, since a subsequent transfer of spores to neutral solution leads to their discharge. Subsequent wash of discharged spores with 1-3% SDS, 9 M urea and treatment by 100% 2-ME result in solubilization of protein of 56 kDa (p56). The maximum concentration of 2-ME is important for isolation of pure p56. Evidence has been provided that p56 is a protein of N. grylli polar tubes. Treatment of discharged spores by 2-ME in the presence of SDS results in solubilization of four additional proteins with molecular weights about 46, 34, 21 and 15 kDa.


Assuntos
Microsporídios/ultraestrutura , Nosema/ultraestrutura , Proteínas de Protozoários/biossíntese , Animais , Anticorpos Antiprotozoários/biossíntese , Parede Celular/metabolismo , Parede Celular/ultraestrutura , Eletroforese em Gel de Poliacrilamida , Immunoblotting , Microscopia Eletrônica , Microsporídios/metabolismo , Microsporídios/fisiologia , Nosema/metabolismo , Nosema/fisiologia , Esporos de Protozoários/metabolismo , Esporos de Protozoários/ultraestrutura
3.
Parazitologiia ; 37(4): 333-42, 2003.
Artigo em Russo | MEDLINE | ID: mdl-14515511

RESUMO

Some differences in trehalose catabolism were found for terrestrial and aquatic microsporidian species (Undeen, Van der Meer, 1999). In microsporidia species from aquatic hosts, the spore extrusion causes the intrasporal trehalose hydrolysis by trehalase that is followed by the drastic rise of reducing sugars (glucose) concentration. On the contrary, in tested terrestrial microsporidian species, total and reducing sugars remain unchanged through the germination. In this study we demonstrate by means of the enzymatic and paper chromatography methods, that in spores of microsporidia Nosema grylli, infecting fat bodies of crickets Gryllus bimaculatus, neither an increase of glucose concentration nor a reduction in intrasporal trehalose content takes place during the spore discharge. In this respect N. grylli is close to other terrestrial species. However, we have revealed in N. grylli spores activity of alpha,alpha-trehalase (EC 3.2.1.28) with acid pH-optimum like it was found by other authors in spores of aquatic microsporidia N. algerae. This result differs from the neutral pH-optimum (7.0) of trehalse of other terrestrial microsporidia N. apis. Concentration of trehalose in N. grylli spores reduces during long-term storage. All attempts to detect an activity of trehalose phosphorylase (synthase) (K phi 2.4.1.64), other potential key enzyme for trehalose catabolism in N. grylli spores have failed. The absence of changes of the sugar content in terrestrial microsporidian spores during the extrusion indicates, that the main physiological role of trehalose hydrolysis by trehalase in these species is catabolism of energy reserves for providing the long-term survival in the environment.


Assuntos
Nosema/metabolismo , Trealose/metabolismo , Animais , Cromatografia em Papel , Corpo Adiposo/parasitologia , Gryllidae/parasitologia , Concentração de Íons de Hidrogênio , Esporos de Protozoários/enzimologia , Esporos de Protozoários/metabolismo , Fatores de Tempo , Trealose/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA