Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
1.
Genes (Basel) ; 14(6)2023 05 29.
Artigo em Inglês | MEDLINE | ID: mdl-37372374

RESUMO

The α-actinin-3 (ACTN3) gene rs1815739 (C/T, R577X) polymorphism is a variant frequently associated with athletic performance among different populations. However, there is limited research on the impact of this variant on athlete status and physical performance in basketball players. Therefore, the aim of this study was twofold: (1) to determine the association of ACTN3 rs1815739 polymorphism with changes in physical performance in response to six weeks of training in elite basketball players using 30 m sprint and Yo-Yo Intermittent Recovery Test Level 2 (IR 2) tests, and (2) to compare ACTN3 genotype and allelic frequencies between elite basketball players and controls. The study included a total of 363 individuals, comprising 101 elite basketball players and 262 sedentary individuals. Genomic DNA was isolated from oral epithelial cells or leukocytes, and genotyping was performed by real-time PCR using KASP genotyping method or by microarray analysis. We found that the frequency of the ACTN3 rs1815739 XX genotype was significantly lower in basketball players compared to controls (10.9 vs. 21.4%, p = 0.023), suggesting that RR/RX genotypes were more favorable for playing basketball. Statistically significant (p = 0.045) changes were observed in Yo-Yo IRT 2 performance measurement tests in basketball players with the RR genotype only. In conclusion, our findings suggest that the carriage of the ACTN3 rs1815739 R allele may confer an advantage in basketball.


Assuntos
Actinina , Basquetebol , Humanos , Actinina/genética , Polimorfismo Genético , Frequência do Gene , Genótipo
2.
Genes (Basel) ; 14(6)2023 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-37372415

RESUMO

Phenotypes of athletic performance and exercise capacity are complex traits influenced by both genetic and environmental factors. This update on the panel of genetic markers (DNA polymorphisms) associated with athlete status summarises recent advances in sports genomics research, including findings from candidate gene and genome-wide association (GWAS) studies, meta-analyses, and findings involving larger-scale initiatives such as the UK Biobank. As of the end of May 2023, a total of 251 DNA polymorphisms have been associated with athlete status, of which 128 genetic markers were positively associated with athlete status in at least two studies (41 endurance-related, 45 power-related, and 42 strength-related). The most promising genetic markers include the AMPD1 rs17602729 C, CDKN1A rs236448 A, HFE rs1799945 G, MYBPC3 rs1052373 G, NFIA-AS2 rs1572312 C, PPARA rs4253778 G, and PPARGC1A rs8192678 G alleles for endurance; ACTN3 rs1815739 C, AMPD1 rs17602729 C, CDKN1A rs236448 C, CPNE5 rs3213537 G, GALNTL6 rs558129 T, IGF2 rs680 G, IGSF3 rs699785 A, NOS3 rs2070744 T, and TRHR rs7832552 T alleles for power; and ACTN3 rs1815739 C, AR ≥21 CAG repeats, LRPPRC rs10186876 A, MMS22L rs9320823 T, PHACTR1 rs6905419 C, and PPARG rs1801282 G alleles for strength. It should be appreciated, however, that elite performance still cannot be predicted well using only genetic testing.


Assuntos
Desempenho Atlético , Estudo de Associação Genômica Ampla , Marcadores Genéticos , Genótipo , DNA
3.
Nutrients ; 15(7)2023 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-37049474

RESUMO

Caffeine is an adenosine A2A receptor (ADORA2A) antagonist with ergogenic and anti-inflammatory effects. Previous studies have reported that the ADORA2A gene regulates glutamate metabolism and immune responses, with the ADORA2A rs5751876 TT genotype (with high sensitivity to caffeine) showing larger ergogenic effect following caffeine ingestion. We therefore hypothesized that the TT genotype would be associated with greater anti-inflammatory effects of caffeine in response to exercise, and with higher coffee intake in physically active individuals. The aim of the present study was twofold: (1) to investigate the association of the ADORA2A variant with the anti-inflammatory effects of caffeine in response to intense resistance exercise (RE), and (2) to analyze the association of the rs5751876 with coffee intake in physically active individuals (n = 134). Fifteen resistance-trained athletes participated in a randomized, double-blind, placebo-controlled cross-over study, where they consumed 6 mg/kg of caffeine or placebo one hour prior to performing an RE protocol. Blood samples were taken immediately from the arterial vein before, immediately after, and 15 min after RE for the analysis of inflammatory markers myeloperoxidase (MPO) and acetylcholinesterase (AChE). We found that the ADORA2A TT genotype carriers experienced lower exercise-induced inflammatory responses (p < 0.05 for AchE) when compared to the C allele carriers (i.e., CC/CT) one hour following the ingestion of caffeine. Furthermore, the ADORA2A TT genotype was positively associated with coffee intake (p = 0.0143; irrespective of CYP1A2 rs762551 polymorphism). In conclusion, we found that the ADORA2A gene polymorphism is associated with anti-inflammatory effects of caffeine in response to resistance exercise, as well as with habitual coffee intake in physically active individuals.


Assuntos
Cafeína , Treinamento Resistido , Humanos , Receptor A2A de Adenosina/genética , Café , Estudos Cross-Over , Acetilcolinesterase , Heterozigoto , Anti-Inflamatórios/farmacologia , Citocromo P-450 CYP1A2/genética , Genótipo
4.
Genes (Basel) ; 14(3)2023 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-36980932

RESUMO

The aim of the study was to identify genetic variants associated with personal best scores in Turkish track and field athletes and to compare allelic frequencies between sprint/power and endurance athletes and controls using a whole-exome sequencing (WES) approach, followed by replication studies in independent cohorts. The discovery phase involved 60 elite Turkish athletes (31 sprint/power and 29 endurance) and 20 ethnically matched controls. The replication phase involved 1132 individuals (115 elite Russian sprinters, 373 elite Russian endurance athletes (of which 75 athletes were with VO2max measurements), 209 controls, 148 Russian and 287 Finnish individuals with muscle fiber composition and cross-sectional area (CSA) data). None of the single nucleotide polymorphisms (SNPs) reached an exome-wide significance level (p < 2.3 × 10-7) in genotype-phenotype and case-control studies of Turkish athletes. However, of the 53 nominally (p < 0.05) associated SNPs, four functional variants were replicated. The SIRT1 rs41299232 G allele was significantly over-represented in Turkish (p = 0.047) and Russian (p = 0.018) endurance athletes compared to sprint/power athletes and was associated with increased VO2max (p = 0.037) and a greater proportion of slow-twitch muscle fibers (p = 0.035). The NUP210 rs2280084 A allele was significantly over-represented in Turkish (p = 0.044) and Russian (p = 0.012) endurance athletes compared to sprint/power athletes. The TRPM2 rs1785440 G allele was significantly over-represented in Turkish endurance athletes compared to sprint/power athletes (p = 0.034) and was associated with increased VO2max (p = 0.008). The AGRN rs4074992 C allele was significantly over-represented in Turkish sprint/power athletes compared to endurance athletes (p = 0.037) and was associated with a greater CSA of fast-twitch muscle fibers (p = 0.024). In conclusion, we present the first WES study of athletes showing that this approach can be used to identify novel genetic markers associated with exercise- and sport-related phenotypes.


Assuntos
Exoma , Atletismo , Humanos , Exoma/genética , Genótipo , Frequência do Gene , Atletas
5.
Nutrients ; 15(3)2023 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-36771461

RESUMO

The substantial decline in skeletal muscle mass, strength, and gait speed is a sign of severe sarcopenia, which may partly depend on genetic risk factors. So far, hundreds of genome-wide significant single nucleotide polymorphisms (SNPs) associated with handgrip strength, lean mass and walking pace have been identified in the UK Biobank cohort; however, their pleiotropic effects on all three phenotypes have not been investigated. By combining summary statistics of genome-wide association studies (GWAS) of handgrip strength, lean mass and walking pace, we have identified 78 independent SNPs (from 73 loci) associated with all three traits with consistent effect directions. Of the 78 SNPs, 55 polymorphisms were also associated with body fat percentage and 25 polymorphisms with type 2 diabetes (T2D), indicating that sarcopenia, obesity and T2D share many common risk alleles. Follow-up bioinformatic analysis revealed that sarcopenia risk alleles were associated with tiredness, falls in the last year, neuroticism, alcohol intake frequency, smoking, time spent watching television, higher salt, white bread, and processed meat intake; whereas protective alleles were positively associated with bone mineral density, serum testosterone, IGF1, and 25-hydroxyvitamin D levels, height, intelligence, cognitive performance, educational attainment, income, physical activity, ground coffee drinking and healthier diet (muesli, cereal, wholemeal or wholegrain bread, potassium, magnesium, cheese, oily fish, protein, water, fruit, and vegetable intake). Furthermore, the literature data suggest that single-bout resistance exercise may induce significant changes in the expression of 26 of the 73 implicated genes in m. vastus lateralis, which may partly explain beneficial effects of strength training in the prevention and treatment of sarcopenia. In conclusion, we have identified and characterized 78 SNPs associated with sarcopenia and 55 SNPs with sarcopenic obesity in European-ancestry individuals from the UK Biobank.


Assuntos
Diabetes Mellitus Tipo 2 , Sarcopenia , Humanos , Sarcopenia/genética , Sarcopenia/complicações , Força da Mão , Diabetes Mellitus Tipo 2/complicações , Estudo de Associação Genômica Ampla , Bancos de Espécimes Biológicos , Obesidade/epidemiologia , Obesidade/genética , Obesidade/complicações , Genômica , Reino Unido/epidemiologia , Músculo Esquelético
6.
Genes (Basel) ; 14(1)2023 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-36672945

RESUMO

The kidney and brain expressed protein (KIBRA) plays an important role in synaptic plasticity. Carriers of the T allele of the KIBRA (WWC1) gene rs17070145 C/T polymorphism have been reported to have enhanced spatial ability and to outperform individuals with the CC genotype in working memory tasks. Since ability in chess and science is directly related to spatial ability and working memory, we hypothesized that the KIBRA T allele would be positively associated with chess player status and PhD status in science. We tested this hypothesis in a study involving 2479 individuals (194 chess players, 119 PhD degree holders in STEM fields, and 2166 controls; 1417 males and 1062 females) from three ethnicities (236 Kazakhs, 1583 Russians, 660 Tatars). We found that frequencies of the T allele were significantly higher in Kazakh (66.9 vs. 55.1%; p = 0.024), Russian (44.8 vs. 32.0%; p = 0.0027), and Tatar (51.5 vs. 41.8%; p = 0.035) chess players compared with ethnically matched controls (meta-analysis for CT/TT vs. CC: OR = 2.05, p = 0.0001). In addition, none of the international chess grandmasters (ranked among the 80 best chess players in the world) were carriers of the CC genotype (0 vs. 46.3%; OR = 16.4, p = 0.005). Furthermore, Russian and Tatar PhD holders had a significantly higher frequency of CT/TT genotypes compared with controls (meta-analysis: OR = 1.71, p = 0.009). Overall, this is the first study to provide comprehensive evidence that the rs17070145 C/T polymorphism of the KIBRA gene may be associated with ability in chess and science, with the T allele exerting a beneficial effect.


Assuntos
Fosfoproteínas , Polimorfismo Genético , Feminino , Humanos , Masculino , Genótipo , Heterozigoto , Peptídeos e Proteínas de Sinalização Intracelular/genética , Memória de Curto Prazo , Fosfoproteínas/genética
7.
Cells ; 11(23)2022 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-36497168

RESUMO

Muscle fiber composition is associated with physical performance, with endurance athletes having a high proportion of slow-twitch muscle fibers compared to power athletes. Approximately 45% of muscle fiber composition is heritable, however, single nucleotide polymorphisms (SNP) underlying inter-individual differences in muscle fiber types remain largely unknown. Based on three whole genome SNP datasets, we have shown that the rs236448 A allele located near the cyclin-dependent kinase inhibitor 1A (CDKN1A) gene was associated with an increased proportion of slow-twitch muscle fibers in Russian (n = 151; p = 0.039), Finnish (n = 287; p = 0.03), and Japanese (n = 207; p = 0.008) cohorts (meta-analysis: p = 7.9 × 10−5. Furthermore, the frequency of the rs236448 A allele was significantly higher in Russian (p = 0.045) and Japanese (p = 0.038) elite endurance athletes compared to ethnically matched power athletes. On the contrary, the C allele was associated with a greater proportion of fast-twitch muscle fibers and a predisposition to power sports. CDKN1A participates in cell cycle regulation and is suppressed by the miR-208b, which has a prominent role in the activation of the slow myofiber gene program. Bioinformatic analysis revealed that the rs236448 C allele was associated with increased CDKN1A expression in whole blood (p = 8.5 × 10−15) and with greater appendicular lean mass (p = 1.2 × 10−5), whereas the A allele was associated with longer durations of exercise (p = 0.044) reported amongst the UK Biobank cohort. Furthermore, the expression of CDKN1A increased in response to strength (p < 0.0001) or sprint (p = 0.00035) training. Accordingly, we found that CDKN1A expression is significantly (p = 0.002) higher in the m. vastus lateralis of strength athletes compared to endurance athletes and is positively correlated with the percentage of fast-twitch muscle fibers (p = 0.018). In conclusion, our data suggest that the CDKN1A rs236448 SNP may be implicated in the determination of muscle fiber composition and may affect athletic performance.


Assuntos
Inibidor de Quinase Dependente de Ciclina p21 , Estudo de Associação Genômica Ampla , Fibras Musculares Esqueléticas , Fibras Musculares de Contração Lenta , Humanos , Atletas , Inibidor de Quinase Dependente de Ciclina p21/genética , Inibidor de Quinase Dependente de Ciclina p21/fisiologia , Fibras Musculares Esqueléticas/fisiologia , Fibras Musculares de Contração Lenta/fisiologia
8.
Genes (Basel) ; 13(11)2022 10 29.
Artigo em Inglês | MEDLINE | ID: mdl-36360211

RESUMO

There is a wide range of individual variability in the change of body weight in response to exercise, and this variability partly depends on genetic factors. The study aimed to determine DNA polymorphisms associated with fat loss efficiency in untrained women with normal weight in response to a 12-week aerobic training program using the GWAS approach, followed by a cross-sectional study in athletes. The study involved 126 untrained young Polish women (age 21.4 ± 1.7 years; body mass index (BMI): 21.7 (2.4) kg/m2) and 550 Russian athletes (229 women, age 23.0 ± 4.1; 321 men, age 23.9 ± 4.7). We identified one genome-wide significant polymorphism (rs116143768) located in the ACSL1 gene (acyl-CoA synthetase long-chain family member 1, implicated in fatty acid oxidation), with a rare T allele associated with higher fat loss efficiency in Polish women (fat mass decrease: CC genotype (n = 122) -3.8%; CT genotype (n = 4) -31.4%; p = 1.18 × 10-9). Furthermore, male athletes with the T allele (n = 7) had significantly lower BMI (22.1 (3.1) vs. 25.3 (4.2) kg/m2, p = 0.046) than subjects with the CC genotype (n = 314). In conclusion, we have shown that the rs116143768 T allele of the ACSL1 gene is associated with higher fat loss efficiency in response to aerobic training in untrained women and lower BMI in physically active men.


Assuntos
Estudo de Associação Genômica Ampla , Obesidade , Humanos , Masculino , Feminino , Adulto Jovem , Adulto , Adolescente , Obesidade/genética , Estudos Transversais , Índice de Massa Corporal , Peso Corporal
9.
Genes (Basel) ; 13(10)2022 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-36292594

RESUMO

Brisk walkers are physically more active, taller, have reduced body fat and greater physical fitness and muscle strength. The aim of our study was to determine whether genetic variants associated with increased walking pace were overrepresented in elite sprinters compared to controls. A total of 70 single-nucleotide polymorphisms (SNPs) previously identified in a genome-wide association study (GWAS) of self-reported walking pace in 450,967 European individuals were explored in relation to sprinter status. Genotyping of 137 Russian elite sprinters and 126 controls was performed using microarray technology. Favorable (i.e., high-speed-walking) alleles of 15 SNPs (FHL2 rs55680124 C, SLC39A8 rs13107325 C, E2F3 rs4134943 T, ZNF568 rs1667369 A, GDF5 rs143384 G, PPARG rs2920503 T, AUTS2 rs10452738 A, IGSF3 rs699785 A, CCT3 rs11548200 T, CRTAC1 rs2439823 A, ADAM15 rs11264302 G, C6orf106 rs205262 A, AKAP6 rs12883788 C, CRTC1 rs11881338 A, NRXN3 rs8011870 G) were identified as having positive associations with sprinter status (p < 0.05), of which IGSF3 rs699785 survived correction for multiple testing (p = 0.00004) and was linked (p = 0.042) with increased proportions of fast-twitch muscle fibers of m. vastus lateralis in physically active men (n = 67). Polygenic analysis revealed that individuals with ≥18 favorable alleles of the 15 SNPs have an increased odds ratio of being an elite sprinter when compared to those with ≤17 alleles (OR: 7.89; p < 0.0001). Using UK Biobank data, we also established the association of 14 favorable alleles with low BMI and fat percentage, 8 alleles with increased handgrip strength, and 7 alleles with increased height and fat-free mass. In conclusion, we have identified 15 new genetic markers associated with sprinter status.


Assuntos
Estudo de Associação Genômica Ampla , Força da Mão , Masculino , Humanos , Força da Mão/fisiologia , Marcadores Genéticos , PPAR gama , Caminhada , Genômica , Proteínas de Ligação ao Cálcio , Proteínas de Membrana/genética , Proteínas ADAM
10.
Biol Sport ; 39(4): 913-919, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36247943

RESUMO

This study aimed to investigate the ACTN3 R577X, ACE I/D, CKM rs8111989, and TRHR rs7832552 genotypes in climbers and controls in three ethnicities. The study consisted of 258 climbers (Japanese, n = 100; Polish, n = 128; Russian, n = 30) and 1151 controls (Japanese: n = 332, Polish: n = 635, Russian: n = 184). Genotyping results were analyzed using the TaqMan approach in Japanese and Polish subjects and HumanOmni1-Quad Bead Chips in Russian subjects. There were no significant differences in ACTN3 R577X and ACE I/D polymorphism distribution between climbers and controls in any ethnic cohort or model. The frequencies of the C allele in the CKM polymorphism and the T allele in the TRHR polymorphism were higher in climbers than in controls only in the Russian cohort (p = 0.045 and p = 0.039, respectively). The results of the meta-analysis on three cohorts showed that the frequency of XX + RX genotypes in the ACTN3 R577X polymorphism was significantly higher in climbers than that in the controls (p = 0.01). The X allele of the ACTN3 R577X polymorphism was associated with sport climbing status, as assessed using a meta-analysis of climbers across three different ethnicities.

11.
Genes (Basel) ; 13(3)2022 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-35327951

RESUMO

Branched-chain amino acid (BCAA) levels are associated with skeletal muscle cross-sectional area (CSA). Serum BCAA levels are enhanced by whey protein supplementation (WPS), and evidence in clinical populations suggests an association of single nucleotide polymorphisms (SNPs) with BCAA metabolite levels. It is not known whether the same SNPs are associated with the ability to catabolise BCAAs from exogenous sources, such as WPS. The present study investigated whether possessing a higher number of alleles associated with increased BCAA metabolites correlates with muscle fiber CSA of m. vastus lateralis in physically active participants, and whether any relationship is enhanced by WPS. Endurance-trained participants (n = 75) were grouped by self-reported habitual WPS consumption and genotyped for five SNPs (PPM1K rs1440580, APOA5 rs2072560, CBLN1 rs1420601, DDX19B rs12325419, and TRMT61A rs58101275). Body mass, BMI, and fat percentage were significantly lower and muscle mass higher in the WPS group compared to Non-WPS. The number of BCAA-increasing alleles was correlated with fiber CSA in the WPS group (r = 0.75, p < 0.0001) and was stronger for fast-twitch fibers (p = 0.001) than slow-twitch fibers (p = 0.048). Similar results remained when corrected for multiple covariates (age, physical activity, and meat and dairy intake). No correlation was found in the Non-WPS group. This study presents novel evidence of a positive relationship between BCAA-increasing alleles and muscle fiber CSA in athletes habitually consuming WPS. We suggest that a high number of BCAA-increasing alleles improves the efficiency of WPS by stimulation of muscle protein synthesis, and contributes to greater fiber CSA.


Assuntos
Aminoácidos de Cadeia Ramificada , Fibras Musculares Esqueléticas , Aminoácidos de Cadeia Ramificada/metabolismo , Atletas , Exercício Físico , Humanos , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/metabolismo
12.
Genes (Basel) ; 13(3)2022 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-35327955

RESUMO

The purpose of this study was to compare the frequency of COL1A1 rs1107946 polymorphism between sport climbers and controls from three ethnic groups (Japanese, Polish, and Russian) and investigate the effect of the COL1A1 rs1107946 polymorphism on the age-related decrease in flexibility in the general population. Study I consisted of 1929 healthy people (controls) and 218 climbers, including Japanese, Polish, and Russian participants. The results of the meta-analysis showed that the frequency of the AC genotype was higher in climbers than in the controls (p = 0.03). Study II involved 1093 healthy Japanese individuals (435 men and 658 women). Flexibility was assessed using a sit-and-reach test. There was a tendency towards association between sit-and-reach and the COL1A1 rs1107946 polymorphism (genotype: p = 0.034; dominant: p = 0.435; recessive: p = 0.035; over-dominant: p = 0.026). In addition, there was a higher negative correlation between sit-and-reach and age in the AA + CC genotype than in the AC genotype (AA + CC: r = −0.216, p < 0.001; AC: r = −0.089, p = 0.04; interaction p = 0.037). However, none of these results survived correction for multiple testing. Further studies are warranted to investigate the association between the COL1A1 gene variation and exercise-related phenotypes.


Assuntos
Cadeia alfa 1 do Colágeno Tipo I/genética , Polimorfismo Genético , Esportes , Feminino , Genótipo , Humanos , Masculino , Federação Russa
13.
Adv Clin Chem ; 107: 215-263, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35337603

RESUMO

Sports genomics is the scientific discipline that focuses on the organization and function of the genome in elite athletes, and aims to develop molecular methods for talent identification, personalized exercise training, nutritional need and prevention of exercise-related diseases. It postulates that both genetic and environmental factors play a key role in athletic performance and related phenotypes. This update on the panel of genetic markers (DNA polymorphisms) associated with athlete status and soft-tissue injuries covers advances in research reported in recent years, including one whole genome sequencing (WGS) and four genome-wide association (GWAS) studies, as well as findings from collaborative projects and meta-analyses. At end of 2020, the total number of DNA polymorphisms associated with athlete status was 220, of which 97 markers have been found significant in at least two studies (35 endurance-related, 24 power-related, and 38 strength-related). Furthermore, 29 genetic markers have been linked to soft-tissue injuries in at least two studies. The most promising genetic markers include HFE rs1799945, MYBPC3 rs1052373, NFIA-AS2 rs1572312, PPARA rs4253778, and PPARGC1A rs8192678 for endurance; ACTN3 rs1815739, AMPD1 rs17602729, CPNE5 rs3213537, CKM rs8111989, and NOS3 rs2070744 for power; LRPPRC rs10186876, MMS22L rs9320823, PHACTR1 rs6905419, and PPARG rs1801282 for strength; and COL1A1 rs1800012, COL5A1 rs12722, COL12A1 rs970547, MMP1 rs1799750, MMP3 rs679620, and TIMP2 rs4789932 for soft-tissue injuries. It should be appreciated, however, that hundreds and even thousands of DNA polymorphisms are needed for the prediction of athletic performance and injury risk.


Assuntos
Desempenho Atlético , Estudo de Associação Genômica Ampla , Actinina/genética , Atletas , Genômica , Genótipo , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética
14.
Biomedicines ; 10(2)2022 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-35203507

RESUMO

Human athletic performance is a complex phenotype influenced by environmental and genetic factors, with most exercise-related traits being polygenic in nature. The aim of this article is to outline some of the challenge faced by sports genetics as this relatively new field moves forward. This review summarizes recent advances in sports science and discusses the impact of the genome, epigenome and other omics (such as proteomics and metabolomics) on athletic performance. The article also highlights the current status of gene doping and examines the possibility of applying genetic knowledge to predict athletes' injury risk and to prevent the rare but alarming occurrence of sudden deaths during sporting events. Future research in large cohorts of athletes has the potential to detect new genetic variants and to confirm the previously identified DNA variants believed to explain the natural predisposition of some individuals to certain athletic abilities and health benefits. It is hoped that this article will be useful to sports scientists who seek a greater understanding of how genetics influences exercise science and how genomic and other multi-omics approaches might support performance analysis, coaching, personalizing nutrition, rehabilitation and sports medicine, as well as the potential to develop new rationale for future scientific investigation.

15.
J Strength Cond Res ; 36(9): 2509-2514, 2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-33278272

RESUMO

ABSTRACT: Moreland, E, Borisov, OV, Semenova, EA, Larin, AK, Andryushchenko, ON, Andryushchenko, LB, Generozov, EV, Williams, AG, and Ahmetov, II. Polygenic profile of elite strength athletes. J Strength Cond Res 36(9): 2509-2514, 2022-Strength is a heritable trait with unknown polygenic nature. So far, more than 200 DNA polymorphisms associated with strength/power phenotypes have been identified majorly involving nonathletic populations. The aim of the present study was to investigate individually and in combination the association of 217 DNA polymorphisms previously identified as markers for strength/power phenotypes with elite strength athlete status. A case-control study involved 83 Russian professional strength athletes (53 weightlifters, 30 powerlifters), 209 Russian and 503 European controls. Genotyping was conducted using micro-array analysis. Twenty-eight DNA polymorphisms (located near or in ABHD17C , ACTG1 , ADCY3 , ADPGK , ANGPT2 , ARPP21 , BCDIN3D , CRTAC1 , DHODH , GBE1 , IGF1 , IL6 , ITPR1 , KIF1B , LRPPRC , MMS22L , MTHFR , NPIPB6 , PHACTR1 , PLEKHB1 , PPARG , PPARGC1A , R3HDM1 , RASGRF1 , RMC1 , SLC39A8 , TFAP2D , ZKSCAN5 genes) were identified to have an association with strength athlete status. Next, to assess the combined impact of all 28 DNA polymorphisms, all athletes were classified according to the number of "strength" alleles they possessed. All highly elite strength athletes were carriers of at least 22 (up to 34) "strength" alleles, whereas 27.8% of Russian controls had less than 22 "strength" alleles ( p < 0.0001). The proportion of subjects with a high (≥26) number of "strength" alleles was significantly greater in highly elite strength athletes (84.8%) compared with less successful strength athletes (64.9%; odd ratio [OR] = 3.0, p = 0.042), Russian (26.3%; OR = 15.6, p < 0.0001) or European (37.8%; OR = 6.4, p < 0.0001) controls. This is the first study to demonstrate that the likelihood of becoming an elite strength athlete depends on the carriage of a high number of strength-related alleles.


Assuntos
Atletas , Polimorfismo Genético , Alelos , Proteínas de Ligação ao Cálcio , Estudos de Casos e Controles , DNA/genética , Genótipo , Humanos , Fator de Transcrição AP-2
16.
J Strength Cond Res ; 36(7): 1884-1889, 2022 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-33306590

RESUMO

ABSTRACT: Guilherme, JPLF, Semenova, EA, Borisov, OV, Kostryukova, ES, Vepkhvadze, TF, Lysenko, EA, Andryushchenko, ON, Andryushchenko, LB, Lednev, EM, Larin, AK, Bondareva, EA, Generozov, EV, and Ahmetov, II. The BDNF-increasing allele is associated with increased proportion of fast-twitch muscle fibers, handgrip strength, and power athlete status. J Strength Cond Res 36(7): 1884-1889, 2022-The brain-derived neurotrophic factor (BDNF) is involved in neurogenesis and formation of regenerated myofibers following injury or damage. A recent study suggested that the BDNF overexpression increases the proportion of fast-twitch muscle fibers, while the BDNF deletion promotes a fast-to-slow transition. The purpose of this study was to evaluate the association between the BDNF gene rs10501089 polymorphism (associated with blood BDNF levels), muscle fiber composition, and power athlete status. Muscle fiber composition was determined in 164 physically active individuals (113 men, 51 women). BDNF genotype and allele frequencies were compared between 508 Russian power athletes, 178 endurance athletes, and 190 controls. We found that carriers of the minor A-allele (the BDNF-increasing allele) had significantly higher percentage of fast-twitch muscle fibers than individuals homozygous for the G-allele (males: 64.3 [7.8] vs. 50.3 [15.8]%, p = 0.0015; all subjects: 64.1 ± 7.9 vs. 49.6 ± 14.7%, p = 0.0002). Furthermore, the A-allele was associated (p = 0.036) with greater handgrip strength in a sub-group of physically active subjects (n = 83) and over-represented in power athletes compared with controls (7.7 vs. 2.4%, p = 0.0001). The presence of the A-allele (i.e., AA+AG genotypes) rather than GG genotype increased the odds ratio of being a power athlete compared with controls (odds ratio [OR]: 3.43, p = 0.00071) or endurance athletes (OR: 2.36, p = 0.0081). In conclusion, the rs10501089 A-allele is associated with increased proportion of fast-twitch muscle fibers and greater handgrip strength, and these may explain, in part, the association between the AA/AG genotypes and power athlete status.


Assuntos
Fator Neurotrófico Derivado do Encéfalo , Força da Mão , Fibras Musculares de Contração Rápida , Alelos , Atletas , Fator Neurotrófico Derivado do Encéfalo/genética , Feminino , Força da Mão/fisiologia , Humanos , Masculino , Força Muscular/fisiologia
17.
Eur J Appl Physiol ; 122(2): 415-423, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34792618

RESUMO

PURPOSE: Circulating testosterone levels are a heritable trait with anabolic properties in various tissues, including skeletal muscle. So far, hundreds of single nucleotide polymorphisms (SNPs) associated with testosterone levels have been identified in nonathletic populations. The aim of the present study was to test the association of 822 testosterone-increasing SNPs with muscle-related traits (muscle fiber size, fat-free mass and handgrip strength) and to validate the identified SNPs in independent cohorts of strength and power athletes. METHODS: One hundred and forty-eight physically active individuals (47 females, 101 males) were assessed for cross-sectional area (CSA) of fast-twitch muscle fibers. Significant SNPs were further assessed for fat-free mass and handgrip strength in > 354,000 participants from the UK Biobank cohort. The validation cohorts included Russian elite athletes. RESULTS: From an initial panel of 822 SNPs, we identified five testosterone-increasing alleles (DOCK3 rs77031559 G, ESR1 rs190930099 G, GLIS3 rs34706136 TG, GRAMD1B rs850294 T, TRAIP rs62260729 C) nominally associated (P < 0.05) with CSA of fast-twitch muscle fibers, fat-free mass and handgrip strength. Based on these five SNPs, the number of testosterone-increasing alleles was positively associated with testosterone levels in male athletes (P = 0.048) and greater strength performance in weightlifters (P = 0.017). Moreover, the proportion of participants with ≥ 2 testosterone-increasing alleles was higher in power athletes compared to controls (68.9 vs. 55.6%; P = 0.012). CONCLUSION: Testosterone-related SNPs are associated with muscle fiber size, fat-free mass and strength, which combined can partially contribute to a greater predisposition to strength/power sports.


Assuntos
Atletas , Genômica , Força Muscular/genética , Músculo Esquelético/metabolismo , Polimorfismo de Nucleotídeo Único , Testosterona/metabolismo , Adulto , Alelos , Feminino , Força da Mão/fisiologia , Humanos , Masculino , Força Muscular/fisiologia
18.
Biol Sport ; 38(4): 659-666, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34937976

RESUMO

Skeletal muscle is a heterogenous and metabolically active tissue, the composition of which is associated with multiple traits. The aim of the study was to determine whether there are additional health and exercise-related traits associated with muscle fiber composition in athletes and non-athletes. This study recruited 164 Russian participants (51 endurance and 48 power athletes; 65 controls). Vastus lateralis muscle fiber composition was assessed by immunohistochemistry. Slow-twitch muscle fiber percentage (STMF%) was significantly greater in endurance than power athletes and non-athletes, and in non-athlete females than males. STMF% was positively associated with athletes' training frequency, non-athletes' and endurance athletes' age, endurance athletes' competition level and chest depth, and power athletes' training age. STMF% was negatively associated with diastolic blood pressure in power athletes and with systolic blood pressure and reaction time in non-athletes. In all participants, STMF% was positively associated with age, tolerance to long distance exercise, chest depth and fracture incidence, and negatively with systolic blood pressure and resting heart rate. Age, sex and training frequency explained 10.6% and 13.2% of the variance in STMF% in endurance and power athletes, respectively. This is one of the most comprehensive studies involving athletes and untrained subjects and provides novel information concerning associations of increased STMF percentage with lower resting heart rate, better tolerance to long distances, faster reaction time and larger chest depth. On the other hand, the increased percentage of fast-twitch muscle fibers was associated with rare fracture incidence.

19.
Genes (Basel) ; 12(10)2021 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-34680894

RESUMO

Multiple genetic variants are known to influence athletic performance. These include polymorphisms of the muscle-specific creatine kinase (CKM) gene, which have been associated with endurance and/or power phenotypes. However, independent replication is required to support those findings. The aim of the present study was to determine whether the CKM (rs8111989, c.*800A>G) polymorphism is associated with power athlete status in professional Russian and Lithuanian competitors. Genomic DNA was collected from 693 national and international standard athletes from Russia (n = 458) and Lithuania (n = 235), and 500 healthy non-athlete subjects from Russia (n = 291) and Lithuania (n = 209). Genotyping for the CKM rs8111989 (A/G) polymorphism was performed using PCR or micro-array analysis. Genotype and allele frequencies were compared between all athletes and non-athletes, and between non-athletes and athletes, segregated according to population and sporting discipline (from anaerobic-type events). No statistically significant differences in genotype or allele frequencies were observed between non-athletes and power athletes (strength-, sprint- and speed/strength-oriented) athletes. The present study reports the non-association of the CKM rs8111989 with elite status in athletes from sports in which anaerobic energy pathways determine success.


Assuntos
Desempenho Atlético , Creatina Quinase Forma MM/genética , Polimorfismo de Nucleotídeo Único , Esportes , Adulto , Feminino , Frequência do Gene , Humanos , Masculino , Adulto Jovem
20.
Biol Sport ; 38(3): 465-474, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34475628

RESUMO

The purpose of this study was to explore the association of the MCT1 gene Glu490Asp polymorphism (rs1049434) with athletic status and performance of endurance athletes. A total of 1,208 Brazilians (318 endurance athletes and 890 non-athletes) and 867 Europeans (315 endurance athletes and 552 non-athletes) were evaluated in a case-control approach. Brazilian participants were classified based on self-declared ethnicity to test whether the polymorphism was different between Caucasians and Afro-descendants. Moreover, 66 Hungarian athletes underwent an incremental test until exhaustion to assess blood lactate levels, while 46 Russian athletes had their maximum oxygen uptake ( V ⋅ O 2 max ) compared between genotypes. In the Brazilian cohort, the major T-allele was more frequent in Caucasian top-level competitors compared to their counterparts of lower competitive level (P = 0.039), and in Afro-descendant athletes compared to non-athletes (P = 0.015). Similarly, the T-allele was more frequent in European athletes (P = 0.029). Meta-analysis of the Brazilian and European cohorts confirmed that the T-allele is over-represented in endurance athletes (OR: 1.48, P = 0.03), especially when Afro-descendant athletes were included in the meta-analysis (OR: 1.58, P = 0.005). Furthermore, carriers of the T/T genotype accumulated less blood lactate in response to intense effort (P < 0.01) and exhibited higher V ⋅ O 2 max (P = 0.04). In conclusion, the Glu490Asp polymorphism was associated with endurance athletic status and performance. Our findings suggest that, although ethnic differences may exist, the presence of the major T-allele (i.e., the Glu-490 allele) favours endurance performance more than the mutant A-allele (i.e., the 490-Asp allele).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...