Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biol Lett ; 12(11)2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27881760

RESUMO

We characterized fungal communities in dry and moist tundra and investigated the effect of long-term experimental summer warming on three aspects of functional groups of arctic fungi: richness, community composition and species abundance. Warming had profound effects on community composition, abundance, and, to a lesser extent, on richness of fungal functional groups. In addition, our data show that even within functional groups, the direction and extent of response to warming tend to be species-specific and we recommend that studies on fungal communities and their roles in nutrient cycling take into account species-level responses.


Assuntos
DNA Fúngico/genética , Fungos/fisiologia , Microbiologia do Solo , Tundra , Alaska , Regiões Árticas , Biodiversidade , Mudança Climática , Fungos/classificação , Fungos/genética , Estações do Ano , Análise de Sequência de DNA , Temperatura
2.
Glob Chang Biol ; 22(9): 3080-96, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27004610

RESUMO

Many arctic ecological processes are regulated by soil temperature that is tightly interconnected with snow cover distribution and persistence. Recently, various climate-induced changes have been observed in arctic tundra ecosystems, e.g. shrub expansion, resulting in reduction in albedo and greater C fixation in aboveground vegetation as well as increased rates of soil C mobilization by microbes. Importantly, the net effects of these shifts are unknown, in part because our understanding of belowground processes is limited. Here, we focus on the effects of increased snow depth, and as a consequence, increased winter soil temperature on ectomycorrhizal (ECM) fungal communities in dry and moist tundra. We analyzed deep DNA sequence data from soil samples taken at a long-term snow fence experiment in Northern Alaska. Our results indicate that, in contrast with previously observed responses of plants to increased snow depth at the same experimental site, the ECM fungal community of the dry tundra was more affected by deeper snow than the moist tundra community. In the dry tundra, both community richness and composition were significantly altered while in the moist tundra, only community composition changed significantly while richness did not. We observed a decrease in richness of Tomentella, Inocybe and other taxa adapted to scavenge the soil for labile N forms. On the other hand, richness of Cortinarius, and species with the ability to scavenge the soil for recalcitrant N forms, did not change. We further link ECM fungal traits with C soil pools. If future warmer atmospheric conditions lead to greater winter snow fall, changes in the ECM fungal community will likely influence C emissions and C fixation through altering N plant availability, fungal biomass and soil-plant C-N dynamics, ultimately determining important future interactions between the tundra biosphere and atmosphere.


Assuntos
Micorrizas , Neve , Alaska , Regiões Árticas , Solo , Tundra
3.
FEMS Microbiol Ecol ; 91(8): fiv095, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26253509

RESUMO

Fungi, including symbionts, pathogens and decomposers, play crucial roles in community dynamics and nutrient cycling in terrestrial ecosystems. Despite their ecological importance, the response of most arctic fungi to climate warming is unknown, so are their potential roles in driving the observed and predicted changes in tundra communities. We carried out deep DNA sequencing of soil samples to study the long-term effects of experimental warming on fungal communities in dry heath and moist tussock tundra in Arctic Alaska. The data presented here indicate that fungal community composition responds strongly to warming in the moist tundra, but not in the dry tundra. While total fungal richness was not significantly affected by warming, there were clear correlations among operational taxonomic unit richness of various ecological and taxonomic groups and long-term warming. Richness of ectomycorrhizal, ericoid mycorrhizal and lichenized fungi generally decreased with warming, while richness of saprotrophic, plant and animal pathogenic, and root endophytic fungi tended to increase in the warmed plots. More importantly, various taxa within these functional guilds followed opposing trends that highlight the importance of species-specific responses to warming. We recommend that species-level ecological differences be taken into account in climate change and nutrient cycling studies that involve arctic fungi.


Assuntos
DNA Fúngico/genética , Aquecimento Global , Micorrizas/classificação , Raízes de Plantas/microbiologia , Plantas/microbiologia , Alaska , Animais , Regiões Árticas , Sequência de Bases , Ecossistema , Consórcios Microbianos/genética , Micorrizas/genética , Análise de Sequência de DNA , Microbiologia do Solo
4.
Glob Chang Biol ; 21(2): 959-72, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25156129

RESUMO

Arctic regions are experiencing the greatest rates of climate warming on the planet and marked changes have already been observed in terrestrial arctic ecosystems. While most studies have focused on the effects of warming on arctic vegetation and nutrient cycling, little is known about how belowground communities, such as fungi root-associated, respond to warming. Here, we investigate how long-term summer warming affects ectomycorrhizal (ECM) fungal communities. We used Ion Torrent sequencing of the rDNA internal transcribed spacer 2 (ITS2) region to compare ECM fungal communities in plots with and without long-term experimental warming in both dry and moist tussock tundra. Cortinarius was the most OTU-rich genus in the moist tundra, while the most diverse genus in the dry tundra was Tomentella. On the diversity level, in the moist tundra we found significant differences in community composition, and a sharp decrease in the richness of ECM fungi due to warming. On the functional level, our results indicate that warming induces shifts in the extramatrical properties of the communities, where the species with medium-distance exploration type seem to be favored with potential implications for the mobilization of different nutrient pools in the soil. In the dry tundra, neither community richness nor community composition was significantly altered by warming, similar to what had been observed in ECM host plants. There was, however, a marginally significant increase in OTUs identified as ECM fungi with the medium-distance exploration type in the warmed plots. Linking our findings of decreasing richness with previous results of increasing ECM fungal biomass suggests that certain ECM species are favored by warming and may become more abundant, while many other species may go locally extinct due to direct or indirect effects of warming. Such compositional shifts in the community might affect nutrient cycling and soil organic C storage.


Assuntos
Biodiversidade , Aquecimento Global , Micorrizas/fisiologia , Microbiologia do Solo , Tundra , Alaska , Regiões Árticas , DNA Fúngico/genética , Dados de Sequência Molecular , Micorrizas/genética , Micorrizas/isolamento & purificação , Reação em Cadeia da Polimerase , Estações do Ano , Análise de Sequência de DNA , Temperatura
5.
Mol Ecol ; 24(2): 424-37, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25522194

RESUMO

Arctic tundra regions have been responding to global warming with visible changes in plant community composition, including expansion of shrubs and declines in lichens and bryophytes. Even though it is well known that the majority of arctic plants are associated with their symbiotic fungi, how fungal community composition will be different with climate warming remains largely unknown. In this study, we addressed the effects of long-term (18 years) experimental warming on the community composition and taxonomic richness of soil ascomycetes in dry and moist tundra types. Using deep Ion Torrent sequencing, we quantified how OTU assemblage and richness of different orders of Ascomycota changed in response to summer warming. Experimental warming significantly altered ascomycete communities with stronger responses observed in the moist tundra compared with dry tundra. The proportion of several lichenized and moss-associated fungi decreased with warming, while the proportion of several plant and insect pathogens and saprotrophic species was higher in the warming treatment. The observed alterations in both taxonomic and ecological groups of ascomycetes are discussed in relation to previously reported warming-induced shifts in arctic plant communities, including decline in lichens and bryophytes and increase in coverage and biomass of shrubs.


Assuntos
Ascomicetos/classificação , Aquecimento Global , Microbiologia do Solo , Tundra , Alaska , Biodiversidade , DNA Fúngico/genética , DNA Espaçador Ribossômico/genética , Dados de Sequência Molecular , Análise de Sequência de DNA
6.
PLoS One ; 9(6): e99852, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24937200

RESUMO

Western European coastal sand dunes are highly important for nature conservation. Communities of the creeping willow (Salix repens) represent one of the most characteristic and diverse vegetation types in the dunes. We report here the results of the first kingdom-wide fungal diversity assessment in S. repens coastal dune vegetation. We carried out massively parallel pyrosequencing of ITS rDNA from soil samples taken at ten sites in an extended area of joined nature reserves located along the North Sea coast of the Netherlands, representing habitats with varying soil pH and moisture levels. Fungal communities in Salix repens beds are highly diverse and we detected 1211 non-singleton fungal 97% sequence similarity OTUs after analyzing 688,434 ITS2 rDNA sequences. Our comparison along a north-south transect indicated strong correlation between soil pH and fungal community composition. The total fungal richness and the number OTUs of most fungal taxonomic groups negatively correlated with higher soil pH, with some exceptions. With regard to ecological groups, dark-septate endophytic fungi were more diverse in acidic soils, ectomycorrhizal fungi were represented by more OTUs in calcareous sites, while detected arbuscular mycorrhizal genera fungi showed opposing trends regarding pH. Furthermore, we detected numerous red listed species in our samples often from previously unknown locations, indicating that some of the fungal species currently considered rare may be more abundant in Dutch S. repens communities than previously thought.


Assuntos
Ascomicetos/genética , Salix/microbiologia , Microbiologia do Solo , Ascomicetos/classificação , Sequência de Bases , Biodiversidade , Conservação dos Recursos Naturais , Código de Barras de DNA Taxonômico , DNA Fúngico/genética , DNA Espaçador Ribossômico/genética , Ecossistema , Países Baixos
7.
Mol Ecol ; 23(10): 2452-72, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24762095

RESUMO

The Yungas, a system of tropical and subtropical montane forests on the eastern slopes of the Andes, are extremely diverse and severely threatened by anthropogenic pressure and climate change. Previous mycological works focused on macrofungi (e.g. agarics, polypores) and mycorrhizae in Alnus acuminata forests, while fungal diversity in other parts of the Yungas has remained mostly unexplored. We carried out Ion Torrent sequencing of ITS2 rDNA from soil samples taken at 24 sites along the entire latitudinal extent of the Yungas in Argentina. The sampled sites represent the three altitudinal forest types: the piedmont (400-700 m a.s.l.), montane (700-1500 m a.s.l.) and montane cloud (1500-3000 m a.s.l.) forests. The deep sequence data presented here (i.e. 4 108 126 quality-filtered sequences) indicate that fungal community composition correlates most strongly with elevation, with many fungi showing preference for a certain altitudinal forest type. For example, ectomycorrhizal and root endophytic fungi were most diverse in the montane cloud forests, particularly at sites dominated by Alnus acuminata, while the diversity values of various saprobic groups were highest at lower elevations. Despite the strong altitudinal community turnover, fungal diversity was comparable across the different zonal forest types. Besides elevation, soil pH, N, P, and organic matter contents correlated with fungal community structure as well, although most of these variables were co-correlated with elevation. Our data provide an unprecedented insight into the high diversity and spatial distribution of fungi in the Yungas forests.


Assuntos
Biodiversidade , Fungos/classificação , Microbiologia do Solo , Árvores/microbiologia , Alnus/microbiologia , Altitude , Argentina , DNA Fúngico/genética , DNA Espaçador Ribossômico/genética , Fungos/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...