Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Comput Chem ; 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38551316

RESUMO

Time-dependent density functional theory (TDDFT) simulations are conducted on a series of chiral gold/silver alloy nanowires to explore whether silver doping can produce an enhancement of circular dichroism at the plasmon resonance in these systems, and to identify the quantum-mechanical origin of the observed effects. We find a strong plasmonic dichroism when one or two helixes of gold atoms are substituted by silver in a linear chiral nanotube, whose pure gold counterpart does not display any plasmonic dichroism, and we rationalize this finding in terms of "decoupling" the destructive interference of excitations in the pure gold nanotube via alloying. However, further attempts to increase the plasmonic dichroism by considering multi-shell gold nanowires in which one entire shell is doped with silver did not produce the desired effect, but rather a decrease in circular dichroism. We show that this latter result is due to a more severe destructive interference in the dipole excitation contributions, and suggest that further amplification should be possible in principle by properly tuning simultaneously the nanowire structure and chemical ordering.

2.
Adv Mater ; 35(14): e2209371, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36644893

RESUMO

Monolayer MoS2 has attracted significant attention owing to its excellent performance as an n-type semiconductor from the transition metal dichalcogenide (TMDC) family. It is however strongly desired to develop controllable synthesis methods for 2D p-type MoS2 , which is crucial for complementary logic applications but remains difficult. In this work, high-quality NbS2 -MoS2 lateral heterostructures are synthesized by one-step metal-organic chemical vapor deposition (MOCVD) together with monolayer MoS2 substitutionally doped by Nb, resulting in a p-type doped behavior. The heterojunction shows a p-type transfer characteristic with a high on/off current ratio of ≈104 , exceeding previously reported values. The band structure through the NbS2 -MoS2 heterojunction is investigated by density functional theory (DFT) and quantum transport simulations. This work provides a scalable approach to synthesize substitutionally doped TMDC materials and provides an insight into the interface between 2D metals and semiconductors in lateral heterostructures, which is imperative for the development of next-generation nanoelectronics and highly integrated devices.

3.
Faraday Discuss ; 242(0): 174-192, 2023 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-36196677

RESUMO

We present a computational study of the energetics and mechanisms of oxidation of Pt-Mn systems. We use slab models and simulate the oxidation process over the most stable (111) facet at a given Pt2Mn composition to make the problem computationally affordable, and combine Density-Functional Theory (DFT) with neural network potentials and metadynamics simulations to accelerate the mechanistic search. We find, first, that Mn has a strong tendency to alloy with Pt. This tendency is optimally realized when Pt and Mn are mixed in the bulk, but, at a composition in which the Mn content is high enough such as for Pt2Mn, Mn atoms will also be found in the surface outmost layer. These surface Mn atoms can dissociate O2 and generate MnOx species, transforming the surface-alloyed Mn atoms into MnOx surface oxide structures supported on a metallic framework in which one or more vacancy sites are simultaneously created. The thus-formed vacancies promote the successive steps of the oxidation process: the vacancy sites can be filled by surface oxygen atoms, which can then interact with Mn atoms in deeper layers, or subsurface Mn atoms can intercalate into interstitial sites. Both these steps facilitate the extraction of further bulk Mn atoms into MnOx oxide surface structures, and thus the progress of the oxidation process, with typical rate-determining energy barriers in the range 0.9-1.0 eV.

4.
ACS Catal ; 12(15): 9058-9073, 2022 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-35966604

RESUMO

Spinel ferrites, especially Nickel ferrite, NiFe2O4, and Cobalt ferrite, CoFe2O4, are efficient and promising anode catalyst materials in the field of electrochemical water splitting. Using density functional theory, we extensively investigate and quantitatively model the mechanism and energetics of the oxygen evolution reaction (OER) on the (001) facets of their inverse-spinel structure, thought as the most abundant orientations under reaction conditions. We catalogue a wide set of intermediates and mechanistic pathways, including the lattice oxygen mechanism (LOM) and adsorbate evolution mechanism (AEM), along with critical (rate-determining) O-O bond formation barriers and transition-state structures. In the case of NiFe2O4, we predict a Fe-site-assisted LOM pathway as the preferred OER mechanism, with a barrier (ΔG ⧧) of 0.84 eV at U = 1.63 V versus SHE and a turnover frequency (TOF) of 0.26 s-1 at 0.40 V overpotential. In the case of CoFe2O4, we find that a Fe-site-assisted LOM pathway (ΔG ⧧ = 0.79 eV at U = 1.63 V vs SHE, TOF = 1.81 s-1 at 0.40 V overpotential) and a Co-site-assisted AEM pathway (ΔG ⧧ = 0.79 eV at bias > U = 1.34 V vs SHE, TOF = 1.81 s-1 at bias >1.34 V) could both play a role, suggesting a coexistence of active sites, in keeping with experimental observations. The computationally predicted turnover frequencies exhibit a fair agreement with experimentally reported data and suggest CoFe2O4 as a more promising OER catalyst than NiFe2O 4 in the pristine case, especially for the Co-site-assisted OER pathway, and may offer a basis for further progress and optimization.

5.
J Phys Chem A ; 126(35): 5890-5899, 2022 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-36001802

RESUMO

A time-dependent density functional theory (TDDFT) computational approach is employed to study the optical coupling between a plasmonic system (a Ag50 nanorod) and a fluorescent dye (BODIPY). It is found that the BODIPY dye can interact with a plasmonic system in a rather different and selective way according to the mutual orientation of the fragments. Indeed, (i) the plasmon excitation turns out to be sensitive to the presence of the BODIPY transition and (ii) this can lead to amplify or suppress the resonance accordingly to the relative orientation of the corresponding transition dipoles. To understand the coupling mechanism, we analyze the shape of the induced density in real space and the Individual Component Map of the Oscillator Strength (ICM-OS) plots and achieve a simple rationalization and insight on the origin and features of the coupling. The resulting possibility of understanding plasmon/fluorophore interactions by simple qualitative arguments opens the way to a rational design of hybrid (plasmon + dye) systems with the desired optical behavior.

6.
Molecules ; 26(22)2021 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-34834052

RESUMO

We report a computational study and analysis of the optical absorption processes of Ag20 and Au20 clusters deposited on the magnesium oxide (100) facet, both regular and including point defects. Ag20 and Au20 are taken as models of metal nanoparticles and their plasmonic response, MgO as a model of a simple oxide support. We consider oxide defects both on the oxygen anion framework (i.e., a neutral oxygen vacancy) and in the magnesium cation framework (i.e., replacing Mg++ with a transition metal: Cu++ or Co++). We relax the clusters' geometries via Density-Functional Theory (DFT) and calculate the photo-absorption spectra via Time-Dependent DFT (TDDFT) simulations on the relaxed geometries. We find that the substrate/cluster interaction induces a broadening and a red-shift of the excited states of the clusters, phenomena that are enhanced by the presence of an oxygen vacancy and its localized excitations. The presence of a transition-metal dopant does not qualitatively affect the spectral profile. However, when it lies next to an oxygen vacancy for Ag20, it can strongly enhance the component of the cluster excitations perpendicular to the surface, thus favoring charge injection.

7.
J Chem Phys ; 155(8): 084103, 2021 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-34470368

RESUMO

We report a computational study via time-dependent density-functional theory (TDDFT) methods of the photo-absorption spectrum of an atomically precise monolayer-protected cluster (MPC), the Ag24Au(DMBT)18 single negative anion, where DMBT is the 2,4-dimethylbenzenethiolate ligand. The use of efficient simulation algorithms, i.e., the complex polarizability polTDDFT approach and the hybrid-diagonal approximation, allows us to employ a variety of exchange-correlation (xc-) functionals at an affordable computational cost. We are thus able to show, first, how the optical response of this prototypical compound, especially but not exclusively in the absorption threshold (low-energy) region, is sensitive to (1) the choice of the xc-functionals employed in the Kohn-Sham equations and the TDDFT kernel and (2) the choice of the MPC geometry. By comparing simulated spectra with precise experimental photoabsorption data obtained from room temperature down to low temperatures, we then demonstrate how a hybrid xc-functional in both the Kohn-Sham equations and the diagonal TDDFT kernel at the crystallographically determined experimental geometry is able to provide a consistent agreement between simulated and measured spectra across the entire optical region. Single-particle decomposition analysis tools finally allow us to understand the physical reason for the failure of non-hybrid approaches.

8.
J Phys Chem Lett ; 12(25): 5829-5835, 2021 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-34138576

RESUMO

Time-dependent density functional theory (TDDFT) simulations are conducted on a series of chiral gold nanowires to explore whether an enhancement of circular dichroism at the plasmon resonance is possible and identify its quantum-mechanical origin. We find that in linear two-dimensional chiral nanowires the dichroic response is suppressed by destructive interference of nearly degenerate components with opposite signs, pointing to this phenomenon as a common and likely origin of the difficulty encountered so far in achieving a plasmonic CD response in experiment and suggesting nevertheless that these opposite components could be "decoupled" by using multiwall arrangements. In contrast, we predict a giant dichroic response for nanowires with three-dimensional helical coiling. We rationalize this finding via an electronic structure analysis of longitudinal and transversal plasmonic excitations and their coupling into chiral components, and we propose a simple formula for the chiral response as a function of structural parameters (nanowire length and coiling number).

9.
ACS Appl Mater Interfaces ; 13(27): 31554-31560, 2021 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-34185998

RESUMO

The electroreduction of CO2 into value-added products is a significant step toward closing the global carbon loop, but its performance remains far from meeting the requirement of any practical application. The insufficient understanding of the reaction mechanism is one of the major causes that impede future development. Although several possible reaction pathways have been proposed, significant debates exist due to the lack of experimental support. In this work, we provide opportunities for experiments to validate the reaction mechanism by providing predictions of the core-level shifts (CLS) of reactive intermediates, which can be verified by the X-ray photoelectron spectroscopy (XPS) data in the experiment. We first validated our methods from benchmark calculations of cases with reliable experiments, from which we reach consistent predictions with experimental results. Then, we conduct theoretical calculations under conditions close to the operando experimental ones and predict the C 1s CLS of 20 reactive intermediates in the CO2 reduction reaction (CO2RR) to CH4 and C2H4 on a Cu(100) catalyst by carefully including solvation effects and applied voltage (U). The results presented in this work should be guidelines for future experiments to verify and interpret the reaction mechanism of CO2RR.

10.
RSC Adv ; 11(12): 7070-7077, 2021 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-35423218

RESUMO

Food quality is of paramount importance for public health safety. For instance, fish freshness can be assessed by sensing the volatile short chain alkylamines produced by spoiled fish. Functionalized graphene is a good candidate for the design of gas sensors for such compounds and therefore of interest as the basic material in food quality sensor devices. To shed theoretical insight in this direction, in the present work we investigate via first-principles density functional theory (DFT) simulations: (i) graphene functionalization via aziridine appendages and (ii) the adsorption of short chain alkylamines (methylamine MA, dimethylamine DMA, and trimethylamine TMA) on the chemically functionalized graphene sheets. Optimal geometries, adsorption energies, and projected density of states (PDOS) are computed using a DFT method. We show that nitrene reactive intermediates, formed by thermal or photo splitting of arylazides - p-carboxyphenyl azide (1a), p-carboxyperfluorophenyl azide (1b), and p-nitrophenyl azide (1c) - react with graphene to yield functionalized derivatives, with reaction energies >-1.0 eV and barriers of the order of 2.0 eV, and open a ∼0.3 to 0.5 eV band gap which is in principle apt for applications in sensing and electronic devices. The interaction between the amines and functionalized graphene, as demonstrated from the calculations of charge density differences showing regions of charge gain and others of charge depletion between the involved groups, occurs through hydrogen bonding with interaction energies ranging from -0.04 eV to -0.76 eV, and induce charge differences in the system, which in the case of p-carboxyperfluorophenyl azide (1b) are sizeable enough to be experimentally observable in sensing.

11.
Molecules ; 27(1)2021 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-35011325

RESUMO

We report a computational study at the time-dependent density functional theory (TDDFT) level of the chiro-optical spectra of chiral gold nanowires coupled in dimers. Our goal is to explore whether it is possible to overcome destructive interference in single nanowires that damp chiral response in these systems and to achieve intense plasmonic circular dichroism (CD) through a coupling between the nanostructures. We predict a huge enhancement of circular dichroism at the plasmon resonance when two chiral nanowires are intimately coupled in an achiral relative arrangement. Such an effect is even more pronounced when two chiral nanowires are coupled in a chiral relative arrangement. Individual component maps of rotator strength, partial contributions according to the magnetic dipole component, and induced densities allow us to fully rationalize these findings, thus opening the way to the field of plasmonic CD and its rational design.

12.
Nanoscale Adv ; 3(10): 2948-2960, 2021 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-36134198

RESUMO

Fluorescent atomically precise Ag38(11-azido-2-ol-undecane-thiolate)24 nanoclusters are easily prepared using sodium ascorbate as a "green" reducer and are extensively characterized by way of elemental analyses, ATR-FTIR, XRD, SAXS, UV-vis, fluorescence spectroscopies, and theoretical modeling. The fluorescence and the atomically determined stoichiometry and structure, the facile and environmentally green synthesis, together with the novel presence of terminal azido groups in the ligands which opens the way to "click"-binding a wide set of molecular species, make Ag38(11-azido-2-ol-undecane-thiolate)24 nanoclusters uniquely appealing systems for biosensing, recognition and functionalization in biomedicine applications and in catalysis.

13.
J Am Chem Soc ; 142(37): 15799-15814, 2020 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-32881489

RESUMO

Understanding the evolution of the structure and properties in metals from molecule-like to bulk-like has been a long sought fundamental question in science, since Faraday's 1857 work. We report the discovery of a Janus nanomolecule, Au191(SPh-tBu)66 having both molecular and metallic characteristics, explored crystallographically and optically and modeled theoretically. Au191 has an anisotropic, singly twinned structure with an Au155 core protected by a ligand shell made of 24 monomeric [-S-Au-S-] and 6 dimeric [-S-Au-S-Au-S-] staples. The Au155 core is composed of an 89-atom inner core and 66 surface atoms, arranged as [Au3@Au23@Au63]@Au66 concentric shells of atoms. The inner core has a monotwinned/stacking-faulted face-centered-cubic (fcc) structure. Structural evolution in metal nanoparticles has been known to progress from multiply twinned, icosahedral, structures in smaller molecular sizes to untwinned bulk-like fcc monocrystalline nanostructures in larger nanoparticles. The monotwinned inner core structure of the ligand capped Au191 nanomolecule provides the critical missing link, and bridges the size-evolution gap between the molecular multiple-twinning regime and the bulk-metal-like particles with untwinned fcc structure. The Janus nature of the nanoparticle is demonstrated by its optical and electronic properties, with metal-like electron-phonon relaxation and molecule-like long-lived excited states. First-principles theoretical explorations of the electronic structure uncovered electronic stabilization through the opening of a shell-closing gap at the top of the occupied manifold of the delocalized electronic superatom spectrum of the inner core. The electronic stabilization together with the inner core geometric stability and the optimally stapled ligand-capping anchor and secure the stability of the entire nanomolecule.

14.
ACS Nano ; 14(8): 9687-9700, 2020 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-32672935

RESUMO

We probe the origin of photoluminescence of an atomically precise noble metal cluster, Ag24Au1(DMBT)18 (DMBT = 2,4-dimethylbenzenethiolate), and the origin of chirality in its chirally functionalized derivatives, Ag24Au1(R/S-BINAS)x(DMBT)18-2x, with x = 1-7 (R/S-BINAS = R/S-1,1'-[binaphthalene]-2,2'-dithiol), using chiroptical spectroscopic measurements and density functional theory (DFT) calculations. Combination of chiroptical and luminescence spectroscopies to understand the nature of electronic transitions has not been applied to such molecule-like metal clusters. In order to impart chirality to the achiral Ag24Au1(DMBT)18 cluster, the chiral ligand, R/S-BINAS, was incorporated into it. A series of clusters, Ag24Au1(R/S-BINAS)x(DMBT)18-2x, with x = 1-7, were synthesized. We demonstrate that the low-energy electronic transitions undergo an unexpected achiral to chiral and back to achiral transition from pure Ag24Au1(DMBT)18 to Ag24Au1(R/S-BINAS)x(DMBT)18-2x, by increasing the number of BINAS ligands. The UV/vis, luminescence, circular dichroism, and circularly polarized luminescence spectroscopic measurements, in conjunction with DFT calculations, suggest that the photoluminescence in Ag24Au1(DMBT)18 and its chirally functionalized derivatives originates from the transitions involving the whole Ag24Au1S18 framework and not merely from the icosahedral Ag12Au1 core. These results suggest that the chiroptical signatures and photoluminescence in these cluster systems cannot be solely attributed to any one of the structural components, that is, the metal core or the protecting metal-ligand oligomeric units, but rather to their interaction and that the ligand shell plays a crucial role. Our work demonstrates that chiroptical spectroscopic techniques such as circular dichroism and circularly polarized luminescence represent useful tools to understand the nature of electronic transitions in ligand-protected metal clusters and that this approach can be utilized for gaining deeper insights into the structure-property relationships of the electronic transitions of such molecule-like clusters.

15.
J Chem Phys ; 152(18): 184104, 2020 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-32414253

RESUMO

A hybrid approach able to perform Time Dependent Density Functional Theory (TDDFT) simulations with the same accuracy as that of hybrid exchange-correlation (xc-) functionals but at a fraction of the computational cost is developed, implemented, and validated. The scheme, which we name Hybrid Diagonal Approximation (HDA), consists in employing in the response function a hybrid xc-functional (containing a fraction of the non-local Hartree-Fock exchange) only for the diagonal elements of the omega matrix, while the adiabatic local density approximation is employed for the off-diagonal terms. HDA is especially (but not exclusively) advantageous when using Slater type orbital basis sets and allows one to employ them in a uniquely efficient way, as we demonstrate here by implementing HDA in a local version of the Amsterdam Density Functional code. The new protocol is tested on NH3, C6H6, and the [Au25(SCH3)18]- cluster as prototypical cases ranging from small molecules to ligand-protected metal clusters, finding excellent agreement with respect to both full kernel TDDFT simulations and experimental data. Additionally, a specific comparison test between full kernel and HDA is considered at the Casida level on seven other molecular species, which further confirm the accuracy of the approach for all investigated systems. For the [Au25(SCH3)18]- cluster, a speedup by a factor of seven is obtained with respect to the full kernel. The HDA, therefore, promises to provide a quantitative description of the optical properties of medium-sized systems (nanoclusters) at an affordable cost, thanks to its computational efficiency, especially in combination with a complex polarization algorithm version of TDDFT.

16.
Front Chem ; 7: 151, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31001511

RESUMO

Tunability and selectivity of synchrotron radiation have been used to study the excitation and ionization of 2-nitroimidazole at the C, N, and O K-edges. The combination of a set of different measurements (X-ray photoelectron spectroscopy, near-edge photoabsorption spectroscopy, Resonant Auger electron spectroscopy, and mass spectrometry) and computational modeling have successfully disclosed local effects due to the chemical environment on both excitation/ionization and fragmentation of the molecule.

17.
Phys Chem Chem Phys ; 21(10): 5435-5447, 2019 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-30793143

RESUMO

The tendency of glycine to form polymer chains on a rutile(110) surface under wet/dry conditions (dry-wet cycles at high temperature) is studied through a conjunction of surface sensitive experimental techniques and sequential periodic multilevel calculations that mimics the experimental procedures with models of decreasing complexity and increasing accuracy. X-ray photoemission spectroscopy (XPS) and thermal desorption spectroscopy (TDS) experimentally confirmed that the dry-wet cycles lead to Gly polymerization on the oxide support. This was supported by all the theoretical characterizations. First, classical reactive molecular dynamics (MD) simulations based on the ReaxFF approach were used to reproduce the adsorption of the experimental glycine solution droplets sprayed onto an oxide support and to identify the most probable arrangement of the molecules that triggered the polymerization mechanisms. Then, quantum chemistry density functional tight binding (DF-TB) MDs and static density functional theory (DFT) calculations were carried out to further explore favorable configurations and to evaluate the energy barriers of the most promising reaction pathways for the peptide bond-formation reactions. The results confirmed the fundamental role played by the substrate to thermodynamically and kinetically favor the process and disclosed its main function as an immobilizing agent: the molecules accommodated in the surface channels close to each other were the ones starting the key events of the dimerization process and the most favorable mechanism was the one where a water molecule acted as a proton exchange mediator in the condensation process.


Assuntos
Glicina , Prebióticos , Titânio , Catálise , Glicina/química , Simulação de Dinâmica Molecular , Oxirredução , Polimerização , Titânio/química , Água/química
18.
J Chem Theory Comput ; 15(3): 2010-2021, 2019 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-30730740

RESUMO

The very first stages of nucleation and growth of ZnO nanoparticles in a plasma reactor are studied by means of a multiscale computational paradigm where the DFT-GGA approach is used to evaluate structure and electronic energy of small (ZnO) N clusters ( N ≤ 24) that are employed as a training set (TS) for the optimization of a Reactive Force Field (ReaxFF). Reactive Molecular Dynamics (RMD) simulations based on this tuned ReaxFF are carried out to reproduce nucleation and growth in a realistic environment. Inside the reaction chamber the temperature is around 1200 K, and the zinc atoms are oxidized in an oxygen-rich atmosphere at high pressure (about 20 atm), whereas in the quenching chamber where the temperature is lower (about 800 K) the ZnO embryo-nanoclusters are grown. The main processes ruling gas-phase nucleation and growth of ZnO nanoclusters are identified and discussed together with the dependence of the inception time and average stoichiometry of nanoclusters of different size on the composition of precursor material and physical parameters.

19.
Phys Chem Chem Phys ; 21(7): 3585-3596, 2019 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-30255885

RESUMO

TDDFT simulations of the absorption and CD spectra of a Pd2Au36(SC2H4Ph)24 monolayer-protected cluster (MPC) are carried out with the aim of investigating the effects of doping, conformational degrees of freedom of the thiolates' end-groups, and charge states on the optical and dichroic response of a prototypical MPC species. Clear signatures of Pd doping in both absorption and CD spectra are found to be a consequence of the participation of Pd (4d) states in the ligand-based d-band and on the unoccupied MOs of lower energy. Exploration of conformational space points to a much greater sensitivity of optical rotation to the conformation of the end-groups of the organic monolayer compared to absorption. Finally, the effect of charge is mainly seen as a decreased dependence of the dichroic response on conformation. The agreement between the TDDFT predictions and the available experimental data is good, and enables an assignment of absorption and CD bands to specific classes of one-particle excitations.

20.
Nanoscale ; 10(37): 17730-17737, 2018 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-30209457

RESUMO

We propose and investigate computationally Ag-Au subnanometer clusters as catalysts for the hydrogen evolution reaction (HER). Focusing on Ag12Au, we conduct a complete first-principles study of the HER process on this Au@Ag ultrananocatalyst. After determining the hydrogen-saturated resting state under standard conditions as Ag12AuH11, HER reaction energies and barriers are predicted also including solvent effects using both implicit and explicit models. We find that Ag12Au is a good candidate as a HER catalyst, with good stability and an overall reaction energy barrier of 0.89 eV as an upper bound. We also draw indications for the design of HER subnanometer catalysts.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...