Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Talanta ; 275: 126159, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38692049

RESUMO

Silver nanoparticles were synthesized inside the small plates of transparent polymer medium by reduction of silver cations. The difference in morphology and sizes of nanoparticles synthesized by chemical, photochemical and thermal reduction was revealed, which depends both on the component ratio of the mixture and on the reduction time for the specific component ratio The polymethacrylate matrix itself acts as the stabilizing agent. A colorimetric sensor based on polymethacrylate matrix and silver nanoparticles was developed for the detection of hydrogen peroxide. The optical properties of the sensor were characterized by spectrophotometer using the surface plasmon resonance. A colorimetric sensor with nanoparticles undergoing to thermal reduction showed a quick result for the determination of hydrogen peroxide in the range 0.2-4.4 mM with a detection limit 0.1 mM.

2.
Int J Mol Sci ; 24(7)2023 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-37047649

RESUMO

This paper focuses on the surface modification of the Ti-6Al-4V alloy substrate via a-C:H:SiOx coating deposition. Research results concern the a-C:H:SiOx coating structure, investigated using transmission electron microscopy and in vitro endothelization to study the coating. Based on the analysis of the atomic radial distribution function, a model is proposed for the atomic short-range order structure of the a-C:H:SiOx coating, and chemical bonds (C-O, C-C, Si-C, Si-O, and Si-Si) are identified. It is shown that the a-C:H:SiOx coating does not possess prolonged cytotoxicity in relation to EA.hy926 endothelial cells. In vitro investigations showed that the adhesion, cell number, and nitric oxide production by EA.hy926 endothelial cells on the a-C:H:SiOx-coated Ti-6Al-4V substrate are significantly lower than those on the uncoated surface. The findings suggest that the a-C:H:SiOx coating can reduce the risk of endothelial cell hyperproliferation on implants and medical devices, including mechanical prosthetic heart valves, endovascular stents, and mechanical circulatory support devices.


Assuntos
Células Endoteliais , Óxido Nítrico , Próteses e Implantes , Titânio/química , Ligas/química , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA