Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Sci Pollut Res Int ; 27(36): 45527-45538, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32797402

RESUMO

Until now, rare earth elements (REEs) recycled from the green phosphor of waste fluorescent lamps (FLs), essentially terbium, remain a major challenge. The sulfuric acid effect on leaching efficiency of REEs from phosphor powder (PP) is investigated in this paper. According to a composite central design, experimental leaching study is performed under various parameters (acid concentration, leaching temperature, and time as well as liquid-to-solid ratio (L/S)). A statistical model of experiments and an analysis of variance are studied in order to predict leaching process. The results showed that by decreasing concentration and L/S ratio while increasing leaching time at optimal temperature value permits profitable terbium extraction. Afterwards, the developed statistical model is explored for an optimized response surface methodology. The obtained results were tested experimentally and showed best terbium extraction with 75%. Moreover, 0.01% for the major contaminant, that is calcium, is reached. This low calcium yield may have a further advantage during REE recovery in the downstream. Therefore, resulting solution under optimal conditions is treated with oxalic acid followed by a calcination of the solid precipitate. Finally, 43.57% and 49.38% are produced for terbium and yttrium oxides, respectively.


Assuntos
Utensílios Domésticos , Térbio , Ácidos , Reciclagem , Temperatura
2.
ACS Omega ; 4(22): 19647-19654, 2019 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-31788595

RESUMO

Tannic acid is a calcite flotation agent widely used in mineral processing. To better understand the physicochemical reactivity of tannic acid toward calcite, the present work focused on studying the mechanisms involved during the adsorption process. Hence, in order to determine the optimal physicochemical parameters, tannic acid adsorption onto calcite was investigated at various experimental conditions such as contact time, initial tannic acid concentration, solution pH, particle size, and temperature. The obtained results showed that the adsorption capacity of tannic acid increased significantly with initial tannic acid concentration. Furthermore, tannic acid adsorption onto calcite was highly dependent on solution pH, and the optimal adsorption amount was found to be at pH 8. Therefore, the behavior controlling the studied adsorption process could be attributed to ion exchange. Moreover, the adsorption mechanism has been determined by isothermal, kinetic, and thermodynamic studies. Thus, the Sips isotherm model was the one that best predicted equilibrium data. Adsorption kinetics followed a pseudo-second-order model, indicating that the adsorption process was controlled by the chemical reaction. The estimated thermodynamic parameters revealed that the adsorption reaction was exothermic in nature and the system entropy decreased nonsignificantly during this process. Based on these results, the study of the physicochemical interaction between tannins and carbonates has potential application in mineral processing as well as in other fields.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...