Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mar Environ Res ; 196: 106402, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38402778

RESUMO

Cephalopods receive a great deal of attention due to their socioeconomically important fisheries and aquaculture industries as well their unique biological features. However, basic information about their physiological responses under stress conditions is lacking. This study investigated the impact of a simple stressor, exercise to exhaustion, on the activity levels of antioxidant enzymes and the concentrations of molecules involved in oxidative stress response in the pale octopus (Octopus pallidus). Eight biochemical assays were measured in the humoral (plasma) and cellular (hemocyte) components of O. pallidus haemolymph, the invertebrate analogue to vertebrate blood. Overall, exercise resulted in an increase in activity of plasma catalase (CAT) and glutathione-S-transferase (GST) and the decrease in activity of plasms glutathione reductase (GR). In the hemocytes, the exercise elicited a different response, with a reduction in the activity of superoxide dismutase (SOD), GR, and glutathione peroxidase (GPX) and a reduction in nitric oxide (NO) concentration. Malondialdehyde (MDA) activity was similar in the plasma and haemocytes in control and exercised treatments, indicating that exercise did not induce lipid peroxidation. These results provide an important baseline for understanding oxidative stress in octopus, with exercise to exhaustion serving as a simple stressor which will ultimately inform our ability to detect and understand physiological responses to more complex stressors.


Assuntos
Octopodiformes , Animais , Octopodiformes/metabolismo , Antioxidantes , Estresse Oxidativo , Catalase/metabolismo , Superóxido Dismutase/metabolismo , Glutationa Peroxidase/metabolismo , Peroxidação de Lipídeos , Glutationa Redutase/metabolismo , Glutationa Transferase/metabolismo , Glutationa/metabolismo
2.
Mar Pollut Bull ; 199: 115480, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37839912

RESUMO

High-intensity, impulsive sounds are used to locate oil and gas reserves during seismic exploration of the seafloor. The impacts of this noise pollution on the health and mortality of marine invertebrates are not well known, including the silverlip pearl oyster (Pinctada maxima), which comprises one of the world's last remaining significant wildstock pearl oyster fisheries, in northwestern Australia. We exposed ≈11,000 P. maxima to a four-day experimental seismic survey, plus one vessel-control day. After exposure, survival rates were monitored throughout a full two-year production cycle, and the number and quality of pearls produced at harvest were assessed. Oysters from two groups, on one sampling day, exhibited reduced survival and pearl productivity compared to controls, but 14 other groups receiving similar or higher exposure levels did not. We therefore found no conclusive evidence of an impact of the seismic source survey on oyster mortality or pearl production.


Assuntos
Pinctada , Animais , Ruído , Som , Austrália , Pesqueiros
3.
Biol Lett ; 19(10): 20230142, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37875159

RESUMO

Body-size relationships between predators and prey exhibit remarkable diversity. However, the assumption that predators typically consume proportionally smaller prey often underlies size-dependent predation in ecosystem models. In reality, some animals can consume larger prey or exhibit limited changes in prey size as they grow larger themselves. These distinct predator-prey size relationships challenge the conventional assumptions of traditional size-based models. Cephalopods, with their diverse feeding behaviours and life histories, offer an excellent case study to investigate the impact of greater biological realism in predator-prey size relationships on energy flow within a size-structured ecosystem model. By categorizing cephalopods into high and low-activity groups, in line with empirically derived, distinct predator-prey size relationships, we found that incorporating greater biological realism in size-based feeding reduced ecosystem biomass and production, while simultaneously increasing biomass stability and turnover. Our results have broad implications for ecosystem modelling, since distinct predator-prey size relationships extend beyond cephalopods, encompassing a wide array of major taxonomic groups from filter-feeding fishes to baleen whales. Incorporating a diversity of size-based feeding in food web models can enhance their ecological and predictive accuracy when studying ecosystem dynamics.


Assuntos
Ecossistema , Cadeia Alimentar , Animais , Biomassa , Tamanho Corporal , Comportamento Alimentar , Comportamento Predatório , Modelos Biológicos
4.
Am Nat ; 201(4): 586-602, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36958006

RESUMO

AbstractUnifying models have shown that the amount of space used by animals (e.g., activity space, home range) scales allometrically with body mass for terrestrial taxa; however, such relationships are far less clear for marine species. We compiled movement data from 1,596 individuals across 79 taxa collected using a continental passive acoustic telemetry network of acoustic receivers to assess allometric scaling of activity space. We found that ectothermic marine taxa do exhibit allometric scaling for activity space, with an overall scaling exponent of 0.64. However, body mass alone explained only 35% of the variation, with the remaining variation best explained by trophic position for teleosts and latitude for sharks, rays, and marine reptiles. Taxon-specific allometric relationships highlighted weaker scaling exponents among teleost fish species (0.07) than sharks (0.96), rays (0.55), and marine reptiles (0.57). The allometric scaling relationship and scaling exponents for the marine taxonomic groups examined were lower than those reported from studies that had collated both marine and terrestrial species data derived using various tracking methods. We propose that these disparities arise because previous work integrated summarized data across many studies that used differing methods for collecting and quantifying activity space, introducing considerable uncertainty into slope estimates. Our findings highlight the benefit of using large-scale, coordinated animal biotelemetry networks to address cross-taxa evolutionary and ecological questions.


Assuntos
Organismos Aquáticos , Peixes , Animais , Comportamento de Retorno ao Território Vital
5.
Environ Pollut ; 309: 119699, 2022 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-35787424

RESUMO

Anthropogenic aquatic noise is recognised as an environmental pollutant with the potential to negatively affect marine organisms. Seismic surveys, used to explore subseafloor oil reserves, are a common source of aquatic noise that have garnered attention due to their intense low frequency inputs and their frequent spatial overlap with coastal fisheries. Commercially important Southern Rock Lobster (Jasus edwardsii) adults have previously shown sensitivity to signals from a single seismic air gun. Here, the sensitivity of J. edwardsii juveniles and puerulus to the signals of a full-scale seismic survey were evaluated to determine if early developmental stages were affected similarly to adults, and the range of impact. To quantify impact, lobster mortality rates, dorsoventral righting reflex and progression through moult cycle were evaluated following exposure. Exposure did not result in mortality in either developmental stage, however, air gun signals caused righting impairment to at least 500 m in lobsters sampled immediately following exposure, as had previously been reported in adults with corresponding sensory system damage following exposure. Impairment resulting from close range (0 m) exposure appeared to be persistent, as previously reported in adults, whereas juveniles exposed at a more distant range (500 m) showed recovery, indicating that exposure at a range of 500 m may not cause lasting impairment to righting. Intermoult duration was (time between moults) significantly increased in juveniles exposed at 0 m from the source, indicating the potential for slowed development, growth, and physiological stress. These results demonstrate that exposure to seismic air gun signals have the potential to negatively impact early life history stages of Southern Rock Lobsters. The similarity of both the impacts and the sound exposure levels observed here compared to previous exposure using a single air gun offer validation for the approach, which opens the potential for accessible field-based experimental work into the impact of seismic surveys on marine invertebrates.


Assuntos
Palinuridae , Animais , Larva/fisiologia , Ruído , Palinuridae/fisiologia , Reflexo de Endireitamento , Alimentos Marinhos
6.
Rev Fish Biol Fish ; 32(1): 65-100, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35280238

RESUMO

Marine ecosystems and their associated biodiversity sustain life on Earth and hold intrinsic value. Critical marine ecosystem services include maintenance of global oxygen and carbon cycles, production of food and energy, and sustenance of human wellbeing. However marine ecosystems are swiftly being degraded due to the unsustainable use of marine environments and a rapidly changing climate. The fundamental challenge for the future is therefore to safeguard marine ecosystem biodiversity, function, and adaptive capacity whilst continuing to provide vital resources for the global population. Here, we use foresighting/hindcasting to consider two plausible futures towards 2030: a business-as-usual trajectory (i.e. continuation of current trends), and a more sustainable but technically achievable future in line with the UN Sustainable Development Goals. We identify key drivers that differentiate these alternative futures and use these to develop an action pathway towards the desirable, more sustainable future. Key to achieving the more sustainable future will be establishing integrative (i.e. across jurisdictions and sectors), adaptive management that supports equitable and sustainable stewardship of marine environments. Conserving marine ecosystems will require recalibrating our social, financial, and industrial relationships with the marine environment. While a sustainable future requires long-term planning and commitment beyond 2030, immediate action is needed to avoid tipping points and avert trajectories of ecosystem decline. By acting now to optimise management and protection of marine ecosystems, building upon existing technologies, and conserving the remaining biodiversity, we can create the best opportunity for a sustainable future in 2030 and beyond.

7.
J Exp Biol ; 225(7)2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-35258589

RESUMO

Field metabolic rate (FMR) is a holistic measure of metabolism representing the routine energy utilization of a species living within a specific ecological context, thus providing insight into its ecology, fitness and resilience to environmental stressors. For animals that cannot be easily observed in the wild, FMR can also be used in concert with dietary data to quantitatively assess their role as consumers, improving understanding of the trophic linkages that structure food webs and allowing for informed management decisions. Here, we modelled the FMR of Greenland sharks (Somniosus microcephalus) equipped with biologger packages or pop-up archival satellite tags (PSATs) in two coastal inlets of Baffin Island (Nunavut) using metabolic scaling relationships for mass, temperature and activity. We estimated that Greenland sharks had an overall mean (±s.d.) FMR of 21.67±2.30 mg O2 h-1 kg-0.84 (n=30; 1-4 day accelerometer package deployments) while residing inside these cold-water fjord systems in the late summer, and 25.48±0.47 mg O2 h-1 kg-0.84 (n=6; PSATs) over an entire year. When considering prey consumption rate, an average shark in these systems (224 kg) requires a maintenance ration of 61-193 g of fish or marine mammal prey daily. As Greenland sharks are a lethargic polar species, these low FMR estimates, and corresponding prey consumption estimates, suggest they require very little energy to sustain themselves under natural conditions. These data provide the first characterization of the energetics and consumer role of this vulnerable and understudied species in the wild, which is essential given growing pressures from climate change and expanding commercial fisheries in the Arctic.


Assuntos
Tubarões , Animais , Regiões Árticas , Cação (Peixe) , Pesqueiros , Cadeia Alimentar , Groenlândia , Mamíferos , Tubarões/metabolismo
8.
Rev Fish Biol Fish ; 32(1): 145-160, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34366578

RESUMO

In the age of the Anthropocene, the ocean has typically been viewed as a sink for pollution. Pollution is varied, ranging from human-made plastics and pharmaceutical compounds, to human-altered abiotic factors, such as sediment and nutrient runoff. As global population, wealth and resource consumption continue to grow, so too does the amount of potential pollution produced. This presents us with a grand challenge which requires interdisciplinary knowledge to solve. There is sufficient data on the human health, social, economic, and environmental risks of marine pollution, resulting in increased awareness and motivation to address this global challenge, however a significant lag exists when implementing strategies to address this issue. This review draws upon the expertise of 17 experts from the fields of social sciences, marine science, visual arts, and Traditional and First Nations Knowledge Holders to present two futures; the Business-As-Usual, based on current trends and observations of growing marine pollution, and a More Sustainable Future, which imagines what our ocean could look like if we implemented current knowledge and technologies. We identify priority actions that governments, industry and consumers can implement at pollution sources, vectors and sinks, over the next decade to reduce marine pollution and steer us towards the More Sustainable Future. Supplementary Information: The online version contains supplementary material available at 10.1007/s11160-021-09674-8.

9.
PeerJ ; 9: e12608, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34966597

RESUMO

Knowledge of the factors shaping the foraging behaviour of species is central to understanding their ecosystem role and predicting their response to environmental variability. To maximise survival and reproduction, foraging strategies must balance the costs and benefits related to energy needed to pursue, manipulate, and consume prey with the nutritional reward obtained. While such information is vital for understanding how changes in prey assemblages may affect predators, determining these components is inherently difficult in cryptic predators. The present study used animal-borne video data loggers to investigate the costs and benefits related to different prey types for female Australian fur seals (Arctocephalus pusillus doriferus), a primarily benthic foraging species in the low productivity Bass Strait, south-eastern Australia. A total of 1,263 prey captures, resulting from 2,027 prey detections, were observed in 84.5 h of video recordings from 23 individuals. Substantial differences in prey pursuit and handling times, gross energy gain and total energy expenditure were observed between prey types. Importantly, the profitability of prey was not significantly different between prey types, with the exception of elasmobranchs. This study highlights the benefit of animal-borne video data loggers for understanding the factors that influence foraging decisions in predators. Further studies incorporating search times for different prey types would further elucidate how profitability differs with prey type.

10.
Biol Conserv ; 256: 108995, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34580542

RESUMO

COVID-19 restrictions have led to an unprecedented global hiatus in anthropogenic activities, providing a unique opportunity to assess human impact on biological systems. Here, we describe how a national network of acoustic tracking receivers can be leveraged to assess the effects of human activity on animal movement and space use during such global disruptions. We outline variation in restrictions on human activity across Australian states and describe four mechanisms affecting human interactions with the marine environment: 1) reduction in economy and trade changing shipping traffic; 2) changes in export markets affecting commercial fisheries; 3) alterations in recreational activities; and 4) decline in tourism. We develop a roadmap for the analysis of acoustic tracking data across various scales using Australia's national Integrated Marine Observing System (IMOS) Animal Tracking Facility as a case study. We illustrate the benefit of sustained observing systems and monitoring programs by assessing how a 51-day break in white shark (Carcharodon carcharias) cage-diving tourism due to COVID-19 restrictions affected the behaviour and space use of two resident species. This cessation of tourism activities represents the longest break since cage-diving vessels started day trips in this area in 2007. Long-term monitoring of the local environment reveals that the activity space of yellowtail kingfish (Seriola lalandi) was reduced when cage-diving boats were absent compared to periods following standard tourism operations. However, white shark residency and movements were not affected. Our roadmap is globally applicable and will assist researchers in designing studies to assess how anthropogenic activities can impact animal movement and distributions during regional, short-term through to major, unexpected disruptions like the COVID-19 pandemic.

11.
Proc Natl Acad Sci U S A ; 118(30)2021 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-34282013

RESUMO

Seismic surveys are used to locate oil and gas reserves below the seabed and can be a major source of noise in marine environments. Their effects on commercial fisheries are a subject of debate, with experimental studies often producing results that are difficult to interpret. We overcame these issues in a large-scale experiment that quantified the impacts of exposure to a commercial seismic source on an assemblage of tropical demersal fishes targeted by commercial fisheries on the North West Shelf of Western Australia. We show that there were no short-term (days) or long-term (months) effects of exposure on the composition, abundance, size structure, behavior, or movement of this fauna. These multiple lines of evidence suggest that seismic surveys have little impact on demersal fishes in this environment.


Assuntos
Acústica/instrumentação , Ecossistema , Pesqueiros/estatística & dados numéricos , Peixes/crescimento & desenvolvimento , Dinâmica Populacional , Animais , Monitoramento Ambiental , Tecnologia de Sensoriamento Remoto , Austrália Ocidental
12.
Environ Pollut ; 267: 115478, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33254599

RESUMO

Staotcysts, the mechanosensory organs common to many marine invertebrates, have shown sensitivity to aquatic noise. Previously, rock lobsters (Jasus edwardsii) from a remote site with little exposure to anthropogenic noise incurred persistent damage to the statocyst and righting reflex following exposure to seismic air gun signals. Here, J. edwardsii collected from a site subject to high levels of anthropogenic noise were exposed to an equivalent seismic air gun signal regime as the previous study of noise-naïve lobsters. Following exposure, both control and exposed treatments were found to have damage to the statocyst equivalent to that of noise-naïve lobsters following seismic exposure, which led to the conclusion that the damage was pre-existing and not exacerbated by seismic exposure. The source of the damage in the lobsters in this study could not be ascertained, but the soundscape comparisons of the collection sites showed that the noisy site had a 5-10 dB greater level of noise, equivalent to a 3-10 times greater intensity, in the 10-700 Hz range than was found at the remote collection site. In addition to the lack of further damage following seismic exposure, no disruption to the righting reflex was observed. Indeed, compared to the noise naïve lobsters, the lobsters here demonstrated an ability to cope with or adapt to the mechanosensory damage, indicating a need for better understanding of the ecological impacts of the damage caused by low frequency noise on marine organisms. More broadly, this study raises historical exposure to noise as a previously unrecognised but vitally important consideration for studies of aquatic noise.


Assuntos
Ruído , Palinuridae , Animais , Meio Ambiente , Ruído/efeitos adversos , Alimentos Marinhos
13.
Sci Rep ; 10(1): 19297, 2020 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-33168918

RESUMO

Metabolic rate is intricately linked to the ecology of organisms and can provide a framework to study the behaviour, life history, population dynamics, and trophic impact of a species. Acquiring measures of metabolic rate, however, has proven difficult for large water-breathing animals such as sharks, greatly limiting our understanding of the energetic lives of these highly threatened and ecologically important fish. Here, we provide the first estimates of resting and active routine metabolic rate for the longest lived vertebrate, the Greenland shark (Somniosus microcephalus). Estimates were acquired through field respirometry conducted on relatively large-bodied sharks (33-126 kg), including the largest individual shark studied via respirometry. We show that despite recording very low whole-animal resting metabolic rates for this species, estimates are within the confidence intervals predicted by derived interspecies allometric and temperature scaling relationships, suggesting this species may not be unique among sharks in this respect. Additionally, our results do not support the theory of metabolic cold adaptation which assumes that polar species maintain elevated metabolic rates to cope with the challenges of life at extreme cold temperatures.


Assuntos
Cadeia Alimentar , Oxigênio/metabolismo , Respiração , Tubarões/metabolismo , Poluentes Químicos da Água/metabolismo , Animais , Regiões Árticas , Canadá , Ecologia , Monitoramento Ambiental , Feminino , Masculino , Temperatura
14.
J Anim Ecol ; 89(11): 2692-2703, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32895913

RESUMO

Individual body size strongly influences the trophic role of marine organisms and the structure and function of marine ecosystems. Quantifying trophic position-individual body size relationships (trophic allometries) underpins the development of size-structured ecosystem models to predict abundance and the transfer of energy through ecosystems. Trophic allometries are well studied for fishes but remain relatively unexplored for cephalopods. Cephalopods are important components of coastal, oceanic and deep-sea ecosystems, and they play a key role in the transfer of biomass from low trophic positions to higher predators. It is therefore important to resolve cephalopod trophic allometries to accurately represent them within size-structured ecosystem models. We assessed the trophic positions of cephalopods in an oceanic pelagic (0-500 m) community (sampled by trawling in a cold-core eddy in the western Tasman Sea), comprising 22 species from 12 families, using bulk tissue stable isotope analysis and amino acid compound-specific stable isotope analysis. We assessed whether ontogenetic trophic position shifts were evident at the species-level and tested for the best predictor of community-level trophic allometry among body size, taxonomy and functional grouping (informed by fin and mantle morphology). Individuals in this cephalopod community spanned two trophic positions and fell into three functional groups on an activity level gradient: low, medium and high. The relationship between trophic position and ontogeny varied among species, with the most marked differences evident between species from different functional groups. Activity-level-based functional group and individual body size are best explained by cephalopod trophic positions (marginal R2  = 0.43). Our results suggest that the morphological traits used to infer activity level, such as fin-to-mantle length ratio, fin musculature and mantle musculature are strong predictors of cephalopod trophic allometries. Contrary to established theory, not all cephalopods are voracious predators. Low activity level cephalopods have a distinct feeding mode, with low trophic positions and little-to-no ontogenetic increases. Given the important role of cephalopods in marine ecosystems, distinct feeding modes could have important consequences for energy pathways and ecosystem structure and function. These findings will facilitate trait-based and other model estimates of cephalopod abundance in the changing global ocean.


Assuntos
Cefalópodes , Ecossistema , Animais , Organismos Aquáticos , Cadeia Alimentar , Estado Nutricional , Oceanos e Mares
15.
Conserv Physiol ; 8(1): coaa045, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32494362

RESUMO

Extensions of species' geographical distributions, or range extensions, are among the primary ecological responses to climate change in the oceans. Considerable variation across the rates at which species' ranges change with temperature hinders our ability to forecast range extensions based on climate data alone. To better manage the consequences of ongoing and future range extensions for global marine biodiversity, more information is needed on the biological mechanisms that link temperatures to range limits. This is especially important at understudied, low relative temperatures relevant to poleward range extensions, which appear to outpace warm range edge contractions four times over. Here, we capitalized on the ongoing range extension of a teleost predator, the Australasian snapper Chrysophrys auratus, to examine multiple measures of ecologically relevant physiological performance at the population's poleward range extension front. Swim tunnel respirometry was used to determine how mid-range and poleward range edge winter acclimation temperatures affect metabolic rate, aerobic scope, swimming performance and efficiency and recovery from exercise. Relative to 'optimal' mid-range temperature acclimation, subsequent range edge minimum temperature acclimation resulted in absolute aerobic scope decreasing while factorial aerobic scope increased; efficiency of swimming increased while maximum sustainable swimming speed decreased; and recovery from exercise required a longer duration despite lower oxygen payback. Cold-acclimated swimming faster than 0.9 body lengths sec-1 required a greater proportion of aerobic scope despite decreased cost of transport. Reduced aerobic scope did not account for declines in recovery and lower maximum sustainable swimming speed. These results suggest that while performances decline at range edge minimum temperatures, cold-acclimated snapper are optimized for energy savings and range edge limitation may arise from suboptimal temperature exposure throughout the year rather than acute minimum temperature exposure. We propose incorporating performance data with in situ behaviour and environmental data in bioenergetic models to better understand how thermal tolerance determines range limits.

16.
Conserv Physiol ; 8(1): coz105, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31976076

RESUMO

The endangered and range-restricted Maugean skate (Zearaja maugeana) is subjected to large environmental variability coupled with anthropogenic stressors in its endemic habitat, Macquarie Harbour, Tasmania. However, little is known about the basic biology/physiology of this skate, or how it may respond to future environmental challenges predicted from climate change and/or increases in human activities such as aquaculture. These skate live at a preferred depth of 5-15 m where the dissolved oxygen (DO) levels are moderate (~55% air saturation), but can be found in areas of the Harbour where DO can range from 100% saturation to anoxia. Given that the water at their preferred depth is already hypoxic, we sought to investigate their response to further decreases in DO that may arise from potential increases in anthropogenic stress. We measured oxygen consumption, haematological parameters, tissue-enzyme capacity and heat shock protein (HSP) levels in skate exposed to 55% dissolved O2 saturation (control) and 20% dissolved O2 saturation (hypoxic) for 48 h. We conclude that the Maugean skate appears to be an oxyconformer, with a decrease in the rate of O2 consumption with increasing hypoxia. Increases in blood glucose and lactate at 20% O2 suggest that skate are relying more on anaerobic metabolism to tolerate periods of very low oxygen. Despite these metabolic shifts, there was no difference in HSP70 levels between groups, suggesting this short-term exposure did not elicit a cellular stress response. The metabolic state of the skate suggests that low oxygen stress for longer periods of time (i.e. >48 h) may not be tolerable and could potentially result in loss of habitat or shifts in their preferred habitat. Given its endemic distribution and limited life-history information, it will be critical to understand its tolerance to environmental challenges to create robust conservation strategies.

17.
Proc Biol Sci ; 286(1907): 20191424, 2019 07 24.
Artigo em Inglês | MEDLINE | ID: mdl-31337309

RESUMO

The effects of anthropogenic aquatic noise on marine invertebrates are poorly understood. We investigated the impact of seismic surveys on the righting reflex and statocyst morphology of the palinurid rock lobster, Jasus edwardsii, using field-based exposure to air gun signals. Following exposure equivalent to a full-scale commercial assay passing within 100-500 m, lobsters showed impaired righting and significant damage to the sensory hairs of the statocyst. Reflex impairment and statocyst damage persisted over the course of the experiments-up to 365 days post-exposure and did not improved following moulting. These results indicate that exposure to air gun signals caused morphological damage to the statocyst of rock lobsters, which can in turn impair complex reflexes. This damage and impairment adds further evidence that anthropogenic aquatic noise has the potential to harm invertebrates, necessitating a better understanding of possible ecological and economic impacts.


Assuntos
Ruído/efeitos adversos , Palinuridae/fisiologia , Acústica , Animais , Feminino , Armas de Fogo , Palinuridae/efeitos da radiação , Reflexo de Endireitamento/fisiologia , Reflexo de Endireitamento/efeitos da radiação , Órgãos dos Sentidos/fisiologia , Órgãos dos Sentidos/efeitos da radiação
18.
J Exp Biol ; 222(Pt 4)2019 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-30777873

RESUMO

Some fishes and sea turtles are distinct from ectotherms by having elevated core body temperatures and metabolic rates. Quantifying the energetics and activity of the regionally endothermic species will help us understand how a fundamental biophysical process (i.e. temperature-dependent metabolism) shapes animal ecology; however, such information is limited owing to difficulties in studying these large, highly active animals. White sharks, Carcharodon carcharias, are the largest fish with regional endothermy, and potentially among the most energy-demanding fishes. Here, we deployed multi-sensor loggers on eight white sharks aggregating near colonies of long-nosed fur seals, Arctocephalus forsteri, off the Neptune Islands, Australia. Simultaneous measurements of depth, swim speed (a proxy for swimming metabolic rate) and body acceleration (indicating when sharks exhibited energy-efficient gliding behaviour) revealed their fine-scale swimming behaviour and allowed us to estimate their energy expenditure. Sharks repeatedly dived (mean swimming depth, 29 m) and swam at the surface between deep dives (maximum depth, 108 m). Modal swim speeds (0.80-1.35 m s-1) were slower than the estimated speeds that minimize cost of transport (1.3-1.9 m s-1), a pattern analogous to a 'sit-and-wait' strategy for a perpetually swimming species. All but one shark employed unpowered gliding during descents, rendering deep (>50 m) dives 29% less costly than surface swimming, which may incur additional wave drag. We suggest that these behavioural strategies may help sharks to maximize net energy gains by reducing swimming cost while increasing encounter rates with fast-swimming seals.


Assuntos
Metabolismo Energético , Tubarões/fisiologia , Natação , Animais , Feminino , Masculino , Comportamento Predatório
19.
Conserv Biol ; 33(2): 403-412, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30091174

RESUMO

Some species may have a larger role than others in the transfer of complex effects of multiple human stressors, such as changes in biomass, through marine food webs. We devised a novel approach to identify such species. We constructed annual interaction-effect networks (IENs) of the simulated changes in biomass between species of the southeastern Australian marine system. Each annual IEN was composed of the species linked by either an additive (sum of the individual stressor response), synergistic (lower biomass compared with additive effects), or antagonistic (greater biomass compared with additive effects) response to the interaction effect of ocean warming, ocean acidification, and fisheries. Structurally, over the simulation period, the number of species and links in the synergistic IENs increased and the network structure became more stable. The stability of the antagonistic IENs decreased and became more vulnerable to the loss of species. In contrast, there was no change in the structural attributes of species linked by an additive response. Using indices common in food-web and network theory, we identified the species in each IEN for which a change in biomass from stressor effects would disproportionately affect the biomass of other species via direct and indirect local, intermediate, and global predator-prey feeding interactions. Knowing the species that transfer the most synergistic or antagonistic responses in a food-web may inform conservation under increasing multiple-stressor impacts.


Identificación de las Especies Importantes que Amplifican o Mitigan los Efectos Interactivos de los Impactos Humanos Resumen Algunas especies pueden tener un papel más importante que otras en la transferencia de los efectos complejos de múltiples estresantes humanos, como los cambios en la biomasa por medio de las redes alimenticias marinas. Diseñamos una metodología novedosa para identificar a dichas especies. Construimos una red de efectos anuales de interacción (IEN, en inglés) a partir de los cambios simulados en la biomasa entre especies del sistema marino del sureste de Australia. Cada IEN anual estuvo compuesta por las especies conectadas por una respuesta aditiva (la suma de las respuestas individuales al estresante), sinérgica (una biomasa menor en comparación con los efectos aditivos) o antagónica (una mayor biomasa en comparación con los efectos aditivos) ante los efectos de interacción del calentamiento oceánico, la acidificación oceánica, y las pesquerías. Estructuralmente, durante el periodo de simulación, el número de especies y conexiones en los IEN sinérgicos incrementó y la estructura de la red se volvió más estable. La estabilidad de las IEN antagónicas disminuyó y se volvió más vulnerable ante la pérdida de especies. En contraste, no hubo cambio en los atributos estructurales de las especies conectadas por una respuesta aditiva. Con el uso de índices comunes entre las redes alimenticias y la teoría de redes identificamos a las especies en cada IEN para las cuales un cambio en la biomasa por causa de los efectos estresantes afectaría desproporcionalmente a la biomasa de las otras especies por medio de interacciones de alimentación locales, intermedias y globales del tipo depredador - presa directas o indirectas. Si sabemos cuáles especies transfieren el mayor número de respuestas sinérgicas o antagónicas en una red alimenticia podemos informar a la conservación que está bajo impactos estresantes cada vez mayores.


Assuntos
Conservação dos Recursos Naturais , Cadeia Alimentar , Austrália , Humanos , Concentração de Íons de Hidrogênio , Água do Mar
20.
Proc Natl Acad Sci U S A ; 115(43): E10275-E10282, 2018 10 23.
Artigo em Inglês | MEDLINE | ID: mdl-30297399

RESUMO

Bottom trawlers land around 19 million tons of fish and invertebrates annually, almost one-quarter of wild marine landings. The extent of bottom trawling footprint (seabed area trawled at least once in a specified region and time period) is often contested but poorly described. We quantify footprints using high-resolution satellite vessel monitoring system (VMS) and logbook data on 24 continental shelves and slopes to 1,000-m depth over at least 2 years. Trawling footprint varied markedly among regions: from <10% of seabed area in Australian and New Zealand waters, the Aleutian Islands, East Bering Sea, South Chile, and Gulf of Alaska to >50% in some European seas. Overall, 14% of the 7.8 million-km2 study area was trawled, and 86% was not trawled. Trawling activity was aggregated; the most intensively trawled areas accounting for 90% of activity comprised 77% of footprint on average. Regional swept area ratio (SAR; ratio of total swept area trawled annually to total area of region, a metric of trawling intensity) and footprint area were related, providing an approach to estimate regional trawling footprints when high-resolution spatial data are unavailable. If SAR was ≤0.1, as in 8 of 24 regions, there was >95% probability that >90% of seabed was not trawled. If SAR was 7.9, equal to the highest SAR recorded, there was >95% probability that >70% of seabed was trawled. Footprints were smaller and SAR was ≤0.25 in regions where fishing rates consistently met international sustainability benchmarks for fish stocks, implying collateral environmental benefits from sustainable fishing.


Assuntos
Pesqueiros/estatística & dados numéricos , Alaska , Animais , Austrália , Biodiversidade , Chile , Ecossistema , Invertebrados/fisiologia , Nova Zelândia , Oceanos e Mares , Alimentos Marinhos/estatística & dados numéricos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...