Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Cancer ; 148(9): 2321-2334, 2021 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-33197301

RESUMO

STAT1 is a critical effector and a target gene of interferon (IFN) signaling, and thus a central mediator of antiviral responses. As both a mediator and a target of IFN signals, STAT1 expression reports on, and determines IFN activity. Gene expression analyses of melanoma patient samples revealed varied levels of STAT1 expression, which highly correlated with expression of >700 genes. The ability of oncolytic viruses to exploit tumor-induced defects to antiviral responses suggests that oncolytic viruses may efficiently target a subset of melanomas, yet these should be defined. We modeled this scenario with murine B16F10 melanomas, immortalized skin fibroblasts as controls and a novel oncolytic virus, EHDV-TAU. In B16F10 cells, constitutive low expression of STAT1 and its target genes, which included intracellular pattern recognition receptors (PRRs), correlated with their inability to mount IFN-based antiviral responses upon EHDV-TAU challenge, and with potency of EHDV-TAU-induced oncolysis. This underexpression of interferon stimulated genes (ISGs) and PRRs, and the inability of EHDV-TAU to induce their expression, were reversed by epigenetic modifiers, suggesting epigenetic silencing as a basis for their underexpression. Despite their inability to mount IFN/STAT-based responses upon viral infection, EHDV-TAU infected B16F10 cells secreted immune-stimulatory chemokines. Accordingly, in vivo, EHDV-TAU enhanced intratumoral infiltration of cytotoxic T-cells and reduced growth of local and distant tumors. We propose that "STAT1 signatures" should guide melanoma virotherapy treatments, and that oncolytic viruses such as EHDV-TAU have the potential to exploit the cellular context of low-STAT1 tumors.


Assuntos
Antivirais/uso terapêutico , Melanoma/tratamento farmacológico , Vírus Oncolíticos/patogenicidade , Animais , Antivirais/farmacologia , Linhagem Celular Tumoral , Proliferação de Células , Humanos , Camundongos
2.
Plant Physiol ; 172(1): 264-71, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27443604

RESUMO

Photosynthetic hydrogen production in the microalga Chlamydomonas reinhardtii is catalyzed by two [FeFe]-hydrogenase isoforms, HydA1 and HydA2, both irreversibly inactivated upon a few seconds exposure to atmospheric oxygen. Until recently, it was thought that hydrogenase is not active in air-grown microalgal cells. In contrast, we show that the entire pool of cellular [FeFe]-hydrogenase remains active in air-grown cells due to efficient scavenging of oxygen. Using membrane inlet mass spectrometry, (18)O2 isotope, and various inhibitors, we were able to dissect the various oxygen uptake mechanisms. We found that both chlororespiration, catalyzed by plastid terminal oxidase, and Mehler reactions, catalyzed by photosystem I and Flavodiiron proteins, significantly contribute to oxygen uptake rate. This rate is considerably enhanced with increasing light, thus forming local anaerobic niches at the proximity of the stromal face of the thylakoid membrane. Furthermore, we found that in transition to high light, the hydrogen production rate is significantly enhanced for a short duration (100 s), thus indicating that [FeFe]-hydrogenase functions as an immediate sink for surplus electrons in aerobic as well as in anaerobic environments. In summary, we show that an anaerobic locality in the chloroplast preserves [FeFe]-hydrogenase activity and supports continuous hydrogen production in air-grown microalgal cells.


Assuntos
Proteínas de Algas/metabolismo , Chlamydomonas reinhardtii/metabolismo , Hidrogênio/metabolismo , Hidrogenase/metabolismo , Proteínas Ferro-Enxofre/metabolismo , Tilacoides/metabolismo , Aerobiose , Proteínas de Algas/genética , Anaerobiose , Células Cultivadas , Chlamydomonas reinhardtii/citologia , Chlamydomonas reinhardtii/genética , Cloroplastos/enzimologia , Cloroplastos/metabolismo , Hidrogenase/genética , Proteínas Ferro-Enxofre/genética , Isoenzimas/genética , Isoenzimas/metabolismo , Cinética , Espectrometria de Massas/métodos , Mutação , Oxirredutases/metabolismo , Oxigênio/metabolismo , Isótopos de Oxigênio/metabolismo , Complexo de Proteína do Fotossistema I/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...