Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Omega ; 4(7): 12632-12646, 2019 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-31460384

RESUMO

The present work explores the structural, microstructural, optical, magnetic, and hyperfine properties of Co0.3Zn0.7Fe2O4 microspheres, which have been synthesized by a novel template-free solvothermal method. Powder X-ray diffraction, electron microscopic, and Fourier transform infrared spectroscopic techniques were employed to thoroughly investigate the structural and microstructural properties of Co0.3Zn0.7Fe2O4 microspheres. The results revealed that the microspheres (average diameter ∼121 nm) have been formed by self-assembly of nanoparticles with an average particle size of ∼12 nm. UV-vis diffuse reflectance spectroscopic and photoluminescence studies have been performed to study the optical properties of the sample. The studies indicate that Co0.3Zn0.7Fe2O4 microspheres exhibit a lower band gap value and enhanced PL intensity compared to their nanoparticle counterpart. The outcomes of dc magnetic measurement and Mössbauer spectroscopic study confirm that the sample is ferrimagnetic in nature. The values of saturation magnetization are 76 and 116 emu g-1 at 300 and 5 K, respectively, which are substantially larger than its nanosized counterpart. The infield Mössbauer spectroscopic study and Rietveld analysis of the PXRD pattern reveal that Fe3+ ions have migrated from [B] to (A) sites resulting in the cation distribution: (Zn2+ 0.46Fe3+ 0.54)A[Zn2+ 0.24Co2+ 0.3Fe3+ 1.46]BO4. Comparison of electrochemical performance of the Co0.3Zn0.7Fe2O4 microspheres to that of the Co0.3Zn0.7Fe2O4 nanoparticles reveals that the former displays greater specific capacitance (149.13 F g-1) than the latter (80.06 F g-1) due to its self-assembled porous structure. Moreover, it was found that Co0.3Zn0.7Fe2O4 microspheres possess a better electrochemical response toward H2O2 sensing than Co0.3Zn0.7Fe2O4 nanoparticles in a wide linear range.

2.
IET Nanobiotechnol ; 12(6): 733-740, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30104446

RESUMO

Two different morphological forms of graphene nanosheets: improved reduced graphene oxide (IRGO) and modified reduced GO (rGO) (MRGO) have been synthesised by improved and modified methods, respectively. Physical characterisations of these graphene nanosheets were carried out using X-ray diffraction, Fourier transform infrared spectroscopy, and Raman spectroscopy. Colloidal stability of these nanosheets toward a selected bacterium (e.g. Staphylococcus aureus) was ascertained by zeta potential. In the present study, the authors for the first time made an attempt to study and compare the potentialities of these two different forms of graphene nanosheets as efficient bactericidal agents. Field-emission scanning electron microscopy and TEM with energy dispersive X-ray spectroscopy (EDAX) studies of IRGO and MRGO have been carried out to explore their underlying mechanism of antibacterial responses through physical as well as chemical interactions with the selected bacterial species.


Assuntos
Antibacterianos/farmacologia , Grafite/química , Nanoestruturas/química , Staphylococcus aureus/efeitos dos fármacos , Antibacterianos/química , Estabilidade de Medicamentos , Testes de Sensibilidade Microbiana , Microscopia Eletrônica de Varredura , Nanocompostos/química , Espectroscopia de Infravermelho com Transformada de Fourier , Staphylococcus aureus/crescimento & desenvolvimento , Propriedades de Superfície , Difração de Raios X
3.
Nanoscale ; 10(28): 13792, 2018 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-29978174

RESUMO

Correction for 'Crystal-defect-induced facet-dependent electrocatalytic activity of 3D gold nanoflowers for the selective nanomolar detection of ascorbic acid' by Sandip Kumar De, et al., Nanoscale, 2018, 10, 11091-11102.

4.
Nanoscale ; 10(23): 11091-11102, 2018 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-29872830

RESUMO

Understanding and exploring the decisive factors responsible for superlative catalytic efficiency is necessary to formulate active electrode materials for improved electrocatalysis and high-throughput sensing. This research demonstrates the ability of bud-shaped gold nanoflowers (AuNFs), intermediates in the bud-to-blossom gold nanoflower synthesis, to offer remarkable electrocatalytic efficiency in the oxidation of ascorbic acid (AA) at nanomolar concentrations. Multicomponent sensing in a single potential sweep is measured using differential pulse voltammetry while the kinetic parameters are estimated using electrochemical impedance spectroscopy. The outstanding catalytic activity of bud-structured AuNF [iAuNFp(Bud)/iGCp ≅ 100] compared with other bud-to-blossom intermediate nanostructures is explained by studying their structural transitions, charge distributions, crystalline patterns, and intrinsic irregularities/defects. Detailed microscopic analysis shows that density of crystal defects, such as edges, terraces, steps, ledges, kinks, and dislocation, plays a major role in producing the high catalytic efficiency. An associated ab initio simulation provides necessary support for the projected role of different crystal facets as selective catalytic sites. Density functional theory corroborates the appearance of inter- and intra-molecular hydrogen bonding within AA molecules to control the resultant fingerprint peak potentials at variable concentrations. Bud-structured AuNF facilitates AA detection at nanomolar levels in a multicomponent pathological sample.


Assuntos
Ácido Ascórbico/análise , Ouro , Nanoestruturas , Espectroscopia Dielétrica , Eletrodos
5.
J Phys Condens Matter ; 29(7): 075901, 2017 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-28032611

RESUMO

The influence of dopants (Co, Cu, Fe and Ni) on the optical, electronic and magnetic properties of multiferroic MnWO4 was studied using Raman spectroscopy, ultraviolet-visible spectroscopy (UV-Vis), magnetization measurements and density functional theory (DFT) calculations. The evolution of Raman spectra with different elemental substitutions at the Mn site was also studied, where the peak width increased with doping of higher mass elements (Co, Cu, Fe and Ni). UV-Vis diffuse reflectance spectroscopy on polycrystalline Mn(1-x) A x WO4 (A = Co, Cu, Fe and Ni) (0 ⩽ [Formula: see text] ⩽ 0. was performed. The evaluated electronic band gap decreasing with successive Co, Cu and Fe doping reflected the lower ionic radius of the substituted element, and for Ni-doped MnWO4 the band gap increased slightly compared to the parent MnWO4. Bader charge transfer and a partial density of states (PDOS) analysis from DFT simulations predict the appearance of impurity states in the band gap region (of pure MnWO4) from the d orbital of the dopant (Co, Cu and Fe) hybridized with the p orbital of the bonded O atoms due to charge transfer from O to the dopant, and reduced the band gap of Co, Cu and Fe-doped MnWO4. On the other hand, for Ni-doped MnWO4 strong W-O hybridization occurring due to large charge transfer from oxygen to tungsten leads to an increase in the band gap. The band gap, computed using the GGA + U method, is close to the experimental value. The signature of the d-d transition observed in the UV spectra is explained in terms of the crystal field stabilization energy caused by the octahedral distortion present in the lattice. Three different antiferromagnetic phases (AF1, AF2 and AF3) are identified in MnWO4 and also for the Co (18.75%)-doped sample. For Cu-doped samples, suppression of the AF1 phase and stabilization of the AF2 phase is observed up to 2 K. Successive doping of Cu leads to the diminution of magnetic frustration. A new magnetic order is identified for Ni-doped MnWO4 in the temperature range 13.7-20 K.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...