Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
1.
FEMS Microbiol Lett ; 369(1)2022 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-36416839

RESUMO

Terrestrial leaf litter is an essential energy source in forest streams and in many tropical streams, including Cerrado, litter undergoes biological decomposition mainly by fungi. However, there is a limited understanding of the contribution of isolated fungal species to in-stream litter decomposition in the tropics. Here we set a full factorial microcosms experiment using four fungal species (Aquanectria penicillioides, Lunulospora curvula, Pestalotiopsis submerses, and Pestalotiopsis sp.) incubated in isolation, two litter types (rapid and slow decomposing litter) and two nutrient levels (natural and enriched), all characteristics of Cerrado streams, to elucidate the role of isolated fungal species on litter decomposition. We found that all fungal species promoted litter mass loss but with contributions that varied from 1% to 8% of the initial mass. The fungal species decomposed 1.5 times more the slow decomposing litter and water nutrient enrichment had no effect on their contribution to mass loss. In contrast, fungal biomass was reduced by nutrient enrichment and was different among fungal species. We showed fungal contribution to decomposition depends on fungal identity and litter type, but not on water nutrients. These findings suggest that the identity of fungal species and litter types may have more important repercussions to in-stream decomposition than moderate nutrient enrichment in the tropics.


Assuntos
Biomassa , Água
2.
Ecol Evol ; 10(16): 8563-8570, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32884640

RESUMO

Amazon and Cerrado-forested streams show natural fluctuations in leaf litter quantity along the time and space, suggesting a change on litter quality input. These natural fluctuations of leaf litter have repercussion on the organic matter cycling and consequently effects on leaf decomposition in forested streams. The effects of the quantity of leaf litter with contrasting traits on consumption by larvae of shredder insects from biomes with different organic matter dynamics have still been an understudied question. The Trichoptera Phylloicus spp. is a typical shredder in tropical headwater streams and keep an important role in leaf litter decomposition. Here, we assessed the consumption by shredder Phylloicus spp., from Amazonia and Cerrado biomes, on higher (Maprounea guianensis) and lower quality leaves (Inga laurina) in different proportions and quantities. Experiments were performed concomitantly in microcosms approaches, simulating Cerrado and Amazonian streams. Higher leaf consumption occurred in Cerrado microcosms. Litter quantity influenced negatively leaf consumption by shredders in Cerrado, in opposition to Amazonia, where consumption was not affected by leaf quantity. In both sites, we observed higher consumption by shredders in treatment with only M. guianensis and no difference between other treatments with mixture of leaves. In treatment with litter of I. laurina, we noted the use of substrate for case building (due to the higher leaf toughness), affecting the fragmentation process. Therefore, our results indicate that leaf litter quality drives the preference of consumption by Phylloicus larvae in Cerrado and Amazonia streams.

3.
AoB Plants ; 82016.
Artigo em Inglês | MEDLINE | ID: mdl-27339051

RESUMO

Research on biological invasions has produced detailed theories describing range expansions of introduced populations. However, current knowledge of evolutionary factors associated with invasive range expansions, especially those related to rapid evolution of long-lived organisms, is still rudimentary. Here, we used a system of six 40-year-old invasive pine populations that originated from replicated introduction events to study evolution in productivity, growth, and chemical defence traits. We tested the hypotheses that invasive populations were undergoing rapid phenotypic change as populations spread, that populations exhibit trade-offs between evolution in growth and chemical defences, and that rates of rapid evolution in plant growth and productivity effect rates of invasion. Although all invasions started from replicated pools of genetic material and equal propagule pressure, we found divergence in mean values for the six invasive populations in the six traits measured. Not only were there between-population variations but also invasive populations were also rapidly changing along each invasive population expansion. Two populations displayed greater leaf areas (LAs) and smaller specific LAs (SLAs) during range expansion. Four populations had faster growth rates at the leading edge of the invasion front in comparison with plants at the rear edge. In terms of total plant defences, non-volatile resin increased in plants along one invasion gradient and decreased in a second, total needle phenolics increased in plants along one invasion gradient and total wood phenolics increased in plants along the one invasion gradient and decreased in a second. We found no trade-offs between investments in growth and chemical defence. Also, faster rates of change in growth rate and LA were positively associated with greater dispersal distances of invasive populations, suggesting rapid evolution may increase invasiveness. Understanding the roles of both natural and human-mediated ecological and evolutionary processes in population-level dynamics is key to understanding the ability of non-native species to invade.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...