Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 598, 2024 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-38238312

RESUMO

In the framework of optical quantum computing and communications, a major objective consists in building receiving nodes implementing conditional operations on incoming photons, using a single stationary qubit. In particular, the quest for scalable nodes motivated the development of cavity-enhanced spin-photon interfaces with solid-state emitters. An important challenge remains, however, to produce a stable, controllable, spin-dependent photon state, in a deterministic way. Here we use an electrically-contacted pillar-based cavity, embedding a single InGaAs quantum dot, to demonstrate giant polarisation rotations induced on reflected photons by a single electron spin. A complete tomography approach is introduced to extrapolate the output polarisation Stokes vector, conditioned by a specific spin state, in presence of spin and charge fluctuations. We experimentally approach polarisation states conditionally rotated by [Formula: see text], π, and [Formula: see text] in the Poincaré sphere with extrapolated fidelities of (97 ± 1) %, (84 ± 7) %, and (90 ± 8) %, respectively. We find that an enhanced light-matter coupling, together with limited cavity birefringence and reduced spectral fluctuations, allow targeting most conditional rotations in the Poincaré sphere, with a control both in longitude and latitude. Such polarisation control may prove crucial to adapt spin-photon interfaces to various configurations and protocols for quantum information.

2.
Phys Rev Lett ; 131(26): 260401, 2023 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-38215371

RESUMO

Energy can be transferred between two quantum systems in two forms: unitary energy-that can be used to drive another system-and correlation energy-that reflects past correlations. We propose and implement experimental protocols to access these energy transfers in interactions between a quantum emitter and light fields. Upon spontaneous emission, we measure the unitary energy transfer from the emitter to the light field and show that it never exceeds half the total energy transfer and is reduced when introducing decoherence. We then study the interference of the emitted field and a coherent laser field at a beam splitter and show that the nature of the energy transfer quantitatively depends on the quantum purity of the emitted field.

3.
Phys Rev Lett ; 129(5): 057401, 2022 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-35960559

RESUMO

The excitonic fine structure plays a key role for the quantum light generated by semiconductor quantum dots, both for entangled photon pairs and single photons. Controlling the excitonic fine structure has been demonstrated using electric, magnetic, or strain fields, but not for quantum dots in optical cavities, a key requirement to obtain high source efficiency and near-unity photon indistinguishability. Here, we demonstrate the control of the fine structure splitting for quantum dots embedded in micropillar cavities. We propose and implement a scheme based on remote electrical contacts connected to the pillar cavity through narrow ridges. Numerical simulations show that such a geometry allows for a three-dimensional control of the electrical field. We experimentally demonstrate tuning and reproducible canceling of the fine structure, a crucial step for the reproducibility of quantum light source technology.

4.
Phys Rev Lett ; 126(23): 233601, 2021 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-34170172

RESUMO

Semiconductor quantum dots in cavities are promising single-photon sources. Here, we present a path to deterministic operation, by harnessing the intrinsic linear dipole in a neutral quantum dot via phonon-assisted excitation. This enables emission of fully polarized single photons, with a measured degree of linear polarization up to 0.994±0.007, and high population inversion-85% as high as resonant excitation. We demonstrate a single-photon source with a polarized first lens brightness of 0.50±0.01, a single-photon purity of 0.954±0.001, and single-photon indistinguishability of 0.909±0.004.

5.
Opt Express ; 29(2): 2637-2646, 2021 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-33726455

RESUMO

Brillouin spectroscopy emerges as a promising non-invasive tool for nanoscale imaging and sensing. One-dimensional semiconductor superlattice structures are eminently used for selectively enhancing the generation or detection of phonons at few GHz. While commercially available Brillouin spectrometers provide high-resolution spectra, they consist of complex experimental techniques and are not suitable for semiconductor cavities operating at a wide range of optical wavelengths. We develop a pragmatic experimental approach for conventional Brillouin spectroscopy that can integrate a widely tunable excitation-source. Our setup combines a fibered-based angular filtering and a spectral filtering based on a rotating single etalon and a double grating spectrometer for sequential reconstruction of Brillouin spectra. This configuration allows probing confined acoustic phonon modes in the 20-300 GHz frequency range with excellent laser rejection and high spectral resolution. Remarkably, our scheme based on the excitation and collection of the enhanced Brillouin scattering signals through the optical cavity allows for better angular filtering with decreasing phonon frequency. It can be implemented for the study of cavity optomechanics and stimulated Brillouin scattering over broadband optical and acoustic frequency ranges.

6.
Phys Rev Lett ; 126(6): 063602, 2021 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-33635709

RESUMO

Hong-Ou-Mandel interference is a cornerstone of optical quantum technologies. We explore both theoretically and experimentally how unwanted multiphoton components of single-photon sources affect the interference visibility, and find that the overlap between the single photons and the noise photons significantly impacts the interference. We apply our approach to quantum dot single-photon sources to access the mean wave packet overlap of the single-photon component. This study provides a consistent platform with which to diagnose the limitations of current single-photon sources on the route towards the ideal device.

7.
Nat Commun ; 11(1): 5501, 2020 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-33127924

RESUMO

Light states composed of multiple entangled photons-such as cluster states-are essential for developing and scaling-up quantum computing networks. Photonic cluster states can be obtained from single-photon sources and entangling gates, but so far this has only been done with probabilistic sources constrained to intrinsically low efficiencies, and an increasing hardware overhead. Here, we report the resource-efficient generation of polarization-encoded, individually-addressable photons in linear cluster states occupying a single spatial mode. We employ a single entangling-gate in a fiber loop configuration to sequentially entangle an ever-growing stream of photons originating from the currently most efficient single-photon source technology-a semiconductor quantum dot. With this apparatus, we demonstrate the generation of linear cluster states up to four photons in a single-mode fiber. The reported architecture can be programmed for linear-cluster states of any number of photons, that are required for photonic one-way quantum computing schemes.

9.
Opt Express ; 25(20): 24437-24447, 2017 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-29041388

RESUMO

Recent experiments demonstrated that GaAs/AlAs based micropillar cavities are promising systems for quantum optomechanics, allowing the simultaneous three-dimensional confinement of near-infrared photons and acoustic phonons in the 18-100 GHz range. Here, we investigate through numerical simulations the optomechanical properties of this new platform. We evidence how the Poisson's ratio and semiconductor/vacuum boundary conditions lead to very distinct features in the mechanical and optical three-dimensional confinement. We find a strong dependence of the mechanical quality factor and strain distribution on the micropillar radius, in great contrast to what is predicted and observed in the optical domain. The derived optomechanical coupling constants g0 reach ultra-large values in the 106 rad/s range.

10.
Sci Rep ; 7(1): 9014, 2017 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-28827784

RESUMO

It was theoretically and experimentally demonstrated that in metal/semiconductor Tamm plasmon structures the probability of spontaneous emission can be increased despite losses in metal, and theoretical analysis of experimental results suggested that the enhancement could be as high as one order of magnitude. Tamm plasmon structure with quantum dots has been fabricated and the emission pattern has been measured. Electromagnetic modes of the structure have been analyzed and modification of spontaneous emission rates has been calculated showing a good agreement with experimentally observed emission pattern.

11.
Phys Rev Lett ; 118(25): 253602, 2017 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-28696749

RESUMO

Solid-state emitters are excellent candidates for developing integrated sources of single photons. Yet, phonons degrade the photon indistinguishability both through pure dephasing of the zero-phonon line and through phonon-assisted emission. Here, we study theoretically and experimentally the indistinguishability of photons emitted by a semiconductor quantum dot in a microcavity as a function of temperature. We show that a large coupling to a high quality factor cavity can simultaneously reduce the effect of both phonon-induced sources of decoherence. It first limits the effect of pure dephasing on the zero-phonon line with indistinguishabilities above 97% up to 18 K. Moreover, it efficiently redirects the phonon sidebands into the zero-phonon line and brings the indistinguishability of the full emission spectrum from 87% (24%) without cavity effect to more than 99% (76%) at 0K (20K). We provide guidelines for optimal cavity designs that further minimize the phonon-induced decoherence.

12.
Phys Rev Lett ; 118(26): 263901, 2017 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-28707938

RESUMO

Strong confinement, in all dimensions, and high mechanical frequencies are highly desirable for quantum optomechanical applications. We show that GaAs/AlAs micropillar cavities fully confine not only photons but also extremely high frequency (19-95 GHz) acoustic phonons. A strong increase of the optomechanical coupling upon reducing the pillar size is observed, together with record room-temperature Q-frequency products of 10^{14}. These mechanical resonators can integrate quantum emitters or polariton condensates, opening exciting perspectives at the interface with nonlinear and quantum optics.

13.
Sci Rep ; 7(1): 3859, 2017 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-28634327

RESUMO

We demonstrate that quality factors up to 5000 can be obtained in Tamm-like hybrid metal/semiconductor structures. To do this, a Bragg mirror is covered by a thin transparent layer and a metallic film. The reduced losses of these modes are related to an intermediate behavior between conventional Tamm plasmon and Bragg modes lying deeper in the semiconductor medium. One of the most striking features of this approach is that these super Tamm modes can still be spatially confined with the metal. Confinement on micrometric scale is experimentally demonstrated. The simplicity and versatility of high-Q mode control by metal structuration open perspectives for lasing and polaritonic applications.

14.
Phys Rev Lett ; 118(13): 130503, 2017 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-28409950

RESUMO

A boson-sampling device is a quantum machine expected to perform tasks intractable for a classical computer, yet requiring minimal nonclassical resources as compared to full-scale quantum computers. Photonic implementations to date employed sources based on inefficient processes that only simulate heralded single-photon statistics when strongly reducing emission probabilities. Boson sampling with only single-photon input has thus never been realized. Here, we report on a boson-sampling device operated with a bright solid-state source of single-photon Fock states with high photon-number purity: the emission from an efficient and deterministic quantum dot-micropillar system is demultiplexed into three partially indistinguishable single photons, with a single-photon purity 1-g^{(2)}(0) of 0.990±0.001, interfering in a linear optics network. Our demultiplexed source is between 1 and 2 orders of magnitude more efficient than current heralded multiphoton sources based on spontaneous parametric down-conversion, allowing us to complete the boson-sampling experiment faster than previous equivalent implementations.

15.
Nat Commun ; 7: 11986, 2016 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-27312189

RESUMO

In a quantum network based on atoms and photons, a single atom should control the photon state and, reciprocally, a single photon should allow the coherent manipulation of the atom. Both operations require controlling the atom environment and developing efficient atom-photon interfaces, for instance by coupling the natural or artificial atom to cavities. So far, much attention has been drown on manipulating the light field with atomic transitions, recently at the few-photon limit. Here we report on the reciprocal operation and demonstrate the coherent manipulation of an artificial atom by few photons. We study a quantum dot-cavity system with a record cooperativity of 13. Incident photons interact with the atom with probability 0.95, which radiates back in the cavity mode with probability 0.96. Inversion of the atomic transition is achieved for 3.8 photons on average, showing that our artificial atom performs as if fully isolated from the solid-state environment.

16.
Nat Commun ; 5: 3240, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24496223

RESUMO

The scalability of a quantum network based on semiconductor quantum dots lies in the possibility of having an electrical control of the quantum dot state as well as controlling its spontaneous emission. The technological challenge is then to define electrical contacts on photonic microstructures optimally coupled to a single quantum emitter. Here we present a novel photonic structure and a technology allowing the deterministic implementation of electrical control for a quantum dot in a microcavity. The device consists of a micropillar connected to a planar cavity through one-dimensional wires; confined optical modes are evidenced with quality factors as high as 33,000. We develop an advanced in-situ lithography technique and demonstrate the deterministic spatial and spectral coupling of a single quantum dot to the connected pillar cavity. Combining this cavity design and technology with a diode structure, we demonstrate a deterministic and electrically tunable single-photon source with an extraction efficiency of around 53 ± 9%.

17.
Phys Rev Lett ; 110(25): 250501, 2013 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-23829719

RESUMO

We demonstrate the unambiguous entangling operation of a photonic quantum-logic gate driven by an ultrabright solid-state single-photon source. Indistinguishable single photons emitted by a single semiconductor quantum dot in a micropillar optical cavity are used as target and control qubits. For a source brightness of 0.56 photons per pulse, the measured truth table has an overlap with the ideal case of 68.4±0.5%, increasing to 73.0±1.6% for a source brightness of 0.17 photons per pulse. The gate is entangling: At a source brightness of 0.48, the Bell-state fidelity is above the entangling threshold of 50% and reaches 71.0±3.6% for a source brightness of 0.15.

18.
Nano Lett ; 13(7): 3179-84, 2013 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-23777399

RESUMO

We demonstrate that confined Tamm plasmon modes can be advantageously exploited for the realization of new kind of metal/semiconductor lasers. Laser emission is demonstrated for Tamm structures with various diameters of the metallic disks which provide the confinement. A reduction of the threshold with the size is observed. The competition between the acceleration of the spontaneous emission and the increase of the losses leads to an optimal size, which is in good agreement with calculations.

19.
Nat Commun ; 4: 1749, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23612290

RESUMO

Manipulation of nonlinear waves in artificial periodic structures leads to spectacular spatial features, such as generation of gap solitons or onset of the Mott insulator phase transition. Cavity exciton-polaritons are strongly interacting quasiparticles offering large possibilities for potential optical technologies. Here we report their condensation in a one-dimensional microcavity with a periodic modulation. The resulting mini-band structure dramatically influences the condensation process. Contrary to non-modulated cavities, where condensates expand, here, we observe spontaneous condensation in localized gap soliton states. Depending on excitation conditions, we access different dynamical regimes: we demonstrate the formation of gap solitons either moving along the ridge or bound to the potential created by the reservoir of uncondensed excitons. We also find Josephson oscillations of gap solitons triggered between the two sides of the reservoir. This system is foreseen as a building block for polaritonic circuits, where propagation and localization are optically controlled and reconfigurable.

20.
Nano Lett ; 13(4): 1516-21, 2013 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-23461679

RESUMO

We experimentally demonstrate the control of the spontaneous emission rate and the radiation pattern of colloidal quantum dots deterministically positioned in a plasmonic patch antenna. The antenna consists of a thin gold microdisk separated from a planar gold layer by a few tens of nanometers thick dielectric layer. The emitters are shown to radiate through the entire patch antenna in a highly directional and vertical radiation pattern. Strong acceleration of spontaneous emission is observed, depending on the antenna geometry. Considering the double dipole structure of the emitters, this corresponds to a Purcell factor up to 80 for dipoles perpendicular to the disk.


Assuntos
Coloides/química , Ouro/química , Pontos Quânticos , Desenho de Equipamento , Luz , Nanoestruturas/química , Nanotecnologia , Óptica e Fotônica , Ressonância de Plasmônio de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...