Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Am Chem Soc ; 146(15): 10687-10698, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38578843

RESUMO

Perfluorooctanoic acid (PFOA) is an artificial chemical of global concern due to its high environmental persistence and potential human health risk. Electrochemical methods are promising technologies for water treatment because they are efficient, cheap, and scalable. The electrochemical reduction of PFOA is one of the current methodologies. This process leads to defluorination of the carbon chain to hydrogenated products. Here, we describe a mechanistic study of the electrochemical reduction of PFOA in gold electrodes. By using linear sweep voltammetry (LSV), an E0' of -1.80 V vs Ag/AgCl was estimated. Using a scan rate diagnosis, we determined an electron-transfer coefficient (αexp) of 0.37, corresponding to a concerted mechanism. The strong adsorption of PFOA into the gold surface is confirmed by the Langmuir-like isotherm in the absence (KA = 1.89 × 1012 cm3 mol-1) and presence of a negative potential (KA = 3.94 × 107 cm3 mol-1, at -1.40 V vs Ag/AgCl). Based on Marcus-Hush's theory, calculations show a solvent reorganization energy (λ0) of 0.9 eV, suggesting a large electrostatic repulsion between the perfluorinated chain and water. The estimated free energy of the transition state of the electron transfer (ΔG‡ = 2.42 eV) suggests that it is thermodynamically the reaction-limiting step. 19F - 1H NMR, UV-vis, and mass spectrometry studies confirm the displacement of fluorine atoms by hydrogen. Density functional theory (DFT) calculations also support the concerted mechanism for the reductive defluorination of PFOA, in agreement with the experimental values.

2.
J Am Chem Soc ; 146(4): 2646-2653, 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38232312

RESUMO

Ammonia reforming of light alkane is conventionally employed for HCN production where coproduct H2 is burned for heating owing to the high reaction temperature (1200 °C) of such a highly endothermic process. Here, we show that a Ni3Ga1 intermetallic compound (IMC) catalyst is highly efficient for such a reaction, realizing efficient conversion of C1-C3 alkanes at 575-750 °C. This makes it feasible for on-purpose COx-free H2 production assuming that ammonia, as an H2 carrier, is ubiquitously available from renewable energy. At 650 °C and an alkane/ammonia ratio of 1/2, ethane and propane conversion of ∼20% and methane conversion of 13% were obtained (with nearly 100% HCN selectivity for methane and ethane) over the unsupported Ni3Ga1 IMC, which also shows high stability due to the absence of coke deposition. This breakthrough is achieved by employing a stoichiometric Ni3Ga1 mixed oxalate solid solution as the precursor for the Ni3Ga1 IMC.

3.
Environ Sci Technol ; 58(2): 1390-1398, 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38165826

RESUMO

The efficient transfer of H2 plays a critical role in catalytic hydrogenation, particularly for the removal of recalcitrant contaminants from water. One of the most persistent contaminants, perfluorooctanoic acid (PFOA), was used to investigate how the method of H2 transfer affected the catalytic hydrodefluorination ability of elemental palladium nanoparticles (Pd0NPs). Pd0NPs were synthesized through an in situ autocatalytic reduction of Pd2+ driven by H2 from the membrane. The Pd0 nanoparticles were directly deposited onto the membrane fibers to form the catalyst film. Direct delivery of H2 to Pd0NPs through the walls of nonporous gas transfer membranes enhanced the hydrodefluorination of PFOA, compared to delivering H2 through the headspace. A higher H2 lumen pressure (20 vs 5 psig) also significantly increased the defluorination rate, although 5 psig H2 flux was sufficient for full reductive defluorination of PFOA. Calculations made using density functional theory (DFT) suggest that subsurface hydrogen delivered directly from the membrane increases and accelerates hydrodefluorination by creating a higher coverage of reactive hydrogen species on the Pd0NP catalyst compared to H2 delivery through the headspace. This study documents the crucial role of the H2 transfer method in the catalytic hydrogenation of PFOA and provides mechanistic insights into how membrane delivery accelerates hydrodefluorination.


Assuntos
Caprilatos , Fluorocarbonos , Nanopartículas Metálicas , Paládio , Hidrogênio
4.
ACS Nano ; 17(24): 25697-25706, 2023 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-38063501

RESUMO

Polycyclic aromatic hydrocarbons (PAHs) constitute a class of universally prevalent carcinogenic environmental contaminants. It is increasingly recognized, however, that PAHs derivatized with oxygen, sulfur, or nitrogen functional groups are frequently more dangerous than their unfunctionalized counterparts. This much larger family of chemicals─polycyclic aromatic compounds─PACs─is far less well characterized than PAHs. Using surface-enhanced Raman and IR Absorption spectroscopies (SERS + SEIRA) combined on a single substrate, along with density functional theoretical (DFT) calculations, we show that direct chemical detection and identification of PACs at sub-parts-per-billion concentration can be achieved. Focusing our studies on 9,10-anthraquinone, 5,12-tetracenequinone, 9-nitroanthracene, and 1-nitropyrene as model PAC contaminants, detection is made possible by incorporating a hydroxy-functionalized self-assembled monolayer that facilitates hydrogen bonding between analytes and the SERS + SEIRA substrate. 5,12-Tetracenequinone was detected at 0.3 ppb, and the limit of detection was determined to be 0.1 ppb using SEIRA alone. This approach is straightforwardly extendable to other families of analytes and will ultimately facilitate fieldable chemical detection of these dangerous yet largely overlooked environmental contaminants.

5.
Environ Sci Technol ; 57(38): 14373-14383, 2023 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-37683087

RESUMO

Transition metal catalysts can significantly enhance the pyrolytic remediation of soils contaminated with polycyclic aromatic hydrocarbons (PAHs). Significantly higher pyrene removal efficiency was observed after the pyrolytic treatment of Fe-enriched bentonite (1.8% wt ion-exchanged content) relative to natural bentonite or soil (i.e., 93% vs 48% and 4%) at the unprecedentedly low temperature of 150 °C with only 15 min treatment time. DFT calculations showed that bentonite surfaces with Fe3+ or Cu2+ adsorb pyrene stronger than surfaces with Zn2+ or Na+. Enhanced pyrene adsorption results from increased charge transfer from its aromatic π-bonds to the cation site, which destabilizes pyrene allowing for faster degradation at lower temperatures. UV-Vis and GC-MS analyses revealed pyrene decomposition products in extracts of samples treated at 150 °C, including small aromatic compounds. As the pyrolysis temperature increased above 200 °C, product distribution shifted from extractable compounds to char coating the residue particles. No extractable byproducts were detected after treatment at 400 °C, indicating that char was the final product of pyrene decomposition. Tests with human lung cells showed that extracts of samples pyrolyzed at 150 °C were toxic; thus, high removal efficiency by pyrolytic treatment does not guarantee detoxification. No cytotoxicity was observed for extracts from Fe-bentonite samples treated at 300 °C, inferring that char is an appropriate treatment end point. Overall, we demonstrate that transition metals in clay can catalyze pyrolytic reactions at relatively low temperatures to decrease the energy and contact times required to meet cleanup standards. However, mitigating residual toxicity may require higher pyrolysis temperatures.


Assuntos
Bentonita , Hidrocarbonetos Policíclicos Aromáticos , Humanos , Temperatura , Bentonita/química , Pirólise , Pirenos/química , Solo
6.
Sci Adv ; 9(24): eadg0167, 2023 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-37327337

RESUMO

The decomposition of cobalt carbide (Co2C) to metallic cobalt in CO2 hydrogenation results in a notable drop in the selectivity of valued C2+ products, and the stabilization of Co2C remains a grand challenge. Here, we report an in situ synthesized K-Co2C catalyst, and the selectivity of C2+ hydrocarbons in CO2 hydrogenation achieves 67.3% at 300°C, 3.0 MPa. Experimental and theoretical results elucidate that CoO transforms to Co2C in the reaction, while the stabilization of Co2C is dependent on the reaction atmosphere and the K promoter. During the carburization, the K promoter and H2O jointly assist in the formation of surface C* species via the carboxylate intermediate, while the adsorption of C* on CoO is enhanced by the K promoter. The lifetime of the K-Co2C is further prolonged from 35 hours to over 200 hours by co-feeding H2O. This work provides a fundamental understanding toward the role of H2O in Co2C chemistry, as well as the potential of extending its application in other reactions.


Assuntos
Dióxido de Carbono , Hidrocarbonetos , Hidrogenação , Adsorção , Atmosfera
7.
Nat Commun ; 14(1): 2865, 2023 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-37208348

RESUMO

Three-dimensional (3D) covalent organic frameworks (COFs) possess higher surface areas, more abundant pore channels, and lower density compared to their two-dimensional counterparts which makes the development of 3D COFs interesting from a fundamental and practical point of view. However, the construction of highly crystalline 3D COF remains challenging. At the same time, the choice of topologies in 3D COFs is limited by the crystallization problem, the lack of availability of suitable building blocks with appropriate reactivity and symmetries, and the difficulties in crystalline structure determination. Herein, we report two highly crystalline 3D COFs with pto and mhq-z topologies designed by rationally selecting rectangular-planar and trigonal-planar building blocks with appropriate conformational strains. The pto 3D COFs show a large pore size of 46 Å with an extremely low calculated density. The mhq-z net topology is solely constructed from totally face-enclosed organic polyhedra displaying a precise uniform micropore size of 1.0 nm. The 3D COFs show a high CO2 adsorption capacity at room temperature and can potentially serve as promising carbon capture adsorbents. This work expands the choice of accessible 3D COF topologies, enriching the structural versatility of COFs.

8.
Nanoscale ; 15(15): 7176-7185, 2023 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-37013402

RESUMO

While stoichiometric quantum dots (QDs) have been well studied, a significant knowledge gap remains in the atomistic understanding of the non-stoichiometric ones, which are predominantly present during the experimental synthesis. Here, we investigate the effect of thermal fluctuations on structural and vibrational properties of non-stoichiometric cadmium selenide (CdSe) nanoclusters: anion-rich (Se-rich) and cation-rich (Cd-rich) using ab initio molecular dynamics (AIMD) simulations. While the excess atoms on the surface fluctuate more for a given QD type, the optical phonon modes are mostly composed of Se atoms dynamics, irrespective of the composition. Moreover, Se-rich QDs have higher bandgap fluctuations compared to Cd-rich QDs, suggesting poor optical properties of Se-rich QDs. Additionally, non-adiabatic molecular dynamics (NAMD) suggests faster non-radiative recombination for Cd-rich QDs. Altogether, this work provides insights into the dynamic electronic properties of non-stoichiometric QDs and proposes a rationale for the observed optical stability and superiority of cation-rich candidates for light emission applications.

9.
ACS Nano ; 17(7): 6698-6707, 2023 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-36971281

RESUMO

The ability for organic surface chemistry to influence the properties of inorganic nanomaterials is appreciated in some instances but is poorly understood in terms of mechanical behavior. Here we demonstrate that the global mechanical strength of a silver nanoplate can be modulated according to the local binding enthalpy of its surface ligands. A continuum-based core-shell model for nanoplate deformation shows that the interior of a particle retains bulk-like properties while the surface shell has yield strength values that depend on surface chemistry. Electron diffraction experiments reveal that, relative to the core, atoms at the nanoplate surface undergo lattice expansion and disordering directly related to the coordinating strength of the surface ligand. As a result, plastic deformation of the shell is more difficult, leading to an enhancement of the global mechanical strength of the plate. These results demonstrate a size-dependent coupling between chemistry and mechanics at the nanoscale.

10.
Environ Sci Technol ; 56(12): 8942-8952, 2022 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-35617117

RESUMO

Hexagonal boron nitride (hBN) can photocatalytically oxidize and degrade perfluorocarboxylic acids (PFCA), a common member of the per/polyfluoroalkyl substance (PFAS) family of water contaminants. However, the reaction mechanism governing PFCA activation on hBN is not yet understood. Here, we apply electronic grand canonical density functional theory (GC-DFT) to assess the thermodynamic and kinetic favorability of PFCA photo-oxidative activation on hBN: CnF2n+1COO- + h+ → CnF2n+1· + CO2. The oxidation of all PFCA chains is exothermic under illumination with a moderate barrier. However, the longer-chain PFCAs are degraded more effectively because they adsorb on the surface more strongly as a result of increased van der Waals interactions with the hBN surface. The ability of hBN to act as a photocatalyst is unexpected because of its wide band gap. Therefore, we apply both theoretical and experimental analyses to examine possible defects on hBN that could account for its activity. We find that a nitrogen-boron substitutional defect (NB), which generates a mid-gap state, can enhance UVC (ultraviolet C) absorption and PFCA oxidation. This work provides insight into the PFCA oxidation mechanism and reveals engineering strategies to design better photocatalysts for PFCA degradation.


Assuntos
Compostos de Boro , Poluentes Químicos da Água , Oxirredução , Água
11.
J Chem Phys ; 156(16): 164105, 2022 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-35490030

RESUMO

Feature selection (FS) methods often are used to develop data-driven descriptors (i.e., features) for rapidly predicting the functional properties of a physical or chemical system based on its composition and structure. FS algorithms identify descriptors from a candidate pool (i.e., feature space) built by feature engineering (FE) steps that construct complex features from the system's fundamental physical properties. Recursive FE, which involves repeated FE operations on the feature space, is necessary to build features with sufficient complexity to capture the physical behavior of a system. However, this approach creates a highly correlated feature space that contains millions or billions of candidate features. Such feature spaces are computationally demanding to process using traditional FS approaches that often struggle with strong collinearity. Herein, we address this shortcoming by developing a new method that interleaves the FE and FS steps to progressively build and select powerful descriptors with reduced computational demand. We call this method iterative Bayesian additive regression trees (iBART), as it iterates between FE with unary/binary operators and FS with Bayesian additive regression trees (BART). The capabilities of iBART are illustrated by extracting descriptors for predicting metal-support interactions in catalysis, which we compare to those predicted in our previous work using other state-of-the-art FS methods (i.e., least absolute shrinkage and selection operator + l0, sure independence screening and sparsifying operator, and Bayesian FS). iBART matches the performance of these methods yet uses a fraction of the computational resources because it generates a maximum feature space of size O(102), as opposed to O(106) generated by one-shot FE/FS methods.

12.
Small Methods ; 6(6): e2200235, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35484478

RESUMO

Benefitting from outstanding ability of CC reforming and hydrogen activation, nickel is widely applied for heterogeneous catalysis or producing high-quality carbon structures. This high activity simultaneously induces uncontrollable carbon formation, known as coking. However, the activity origin for growing carbon species remains in debate between the on metallic facets induction and nickel carbide segregation. Herein, carbon growth on Ni catalyst is tracked via in situ microscopy methods. Evidence derived from high-resolution transmission electron microscopy imaging, diffraction, and energy loss spectroscopy unambiguously identifies Ni3 C as the active phase, as opposed to metallic Ni nickel or surface carbides as traditionally believed. Specifically, Ni3 C particle grows carbon nanofibers (CNF) layer-by-layer through synchronized oscillation of tip stretch and atomic step fluctuations. There is an anisotropic stress distribution in Ni3 C that provides the lifting force during nanofiber growth. Density functional theory computations show that it is thermodynamically favorable for Ni3 C to decompose into Ni and surface-adsorbed carbon. Carbonaceous deposits aggregate asymmetrically round the particle because partial surface is exposed to the hydrocarbon environment whereas the bottom side is shielded by the support. This induces a carbon concentration gradient within the particle, which drives C migration through Ni3 C phase before it exits as CNF growth.

13.
Sci Adv ; 8(5): eabm3629, 2022 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-35119927

RESUMO

Identifying the dynamic structure of heterogeneous catalysts is crucial for the rational design of new ones. In this contribution, the structural evolution of Fe(0) catalysts during CO2 hydrogenation to hydrocarbons has been investigated by using several (quasi) in situ techniques. Upon initial reduction, Fe species are carburized to Fe3C and then to Fe5C2. The by-product of CO2 hydrogenation, H2O, oxidizes the iron carbide to Fe3O4. The formation of Fe3O4@(Fe5C2+Fe3O4) core-shell structure was observed at steady state, and the surface composition depends on the balance of oxidation and carburization, where water plays a key role in the oxidation. The performance of CO2 hydrogenation was also correlated with the dynamic surface structure. Theoretical calculations and controll experiments reveal the interdependence between the phase transition and reactive environment. We also suggest a practical way to tune the competitive reactions to maintain an Fe5C2-rich surface for a desired C2+ productivity.

14.
Environ Sci Technol ; 55(24): 16699-16707, 2021 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-34874150

RESUMO

PFAAs (perfluorinated alkyl acids) have become a concern because of their widespread pollution and persistence. A previous study introduced a novel approach for removing and hydrodefluorinating perfluorooctanoic acid (PFOA) using palladium nanoparticles (Pd0NPs) in situ synthesized on H2-gas-transfer membranes. This work focuses on the products, pathways, and optimal catalyst conditions. Kinetic tests tracking PFOA removal, F- release, and hydrodefluorination intermediates documented that PFOA was hydrodefluorinated by a mixture of parallel and stepwise reactions on the Pd0NP surfaces. Slow desorption of defluorination products lowered the catalyst's activity for hydrodefluorination. Of the platinum group metals studied, Pd was overall superior to Pt, Rh, and Ru for hydrodefluorinating PFOA. pH had a strong influence on performance: PFOA was more strongly adsorbed at higher pH, but lower pH promoted defluorination. A membrane catalyst-film reactor (MCfR), containing an optimum loading of 1.2 g/m2 Pd0 for a total Pd amount of 22 mg, removed 3 mg/L PFOA during continuous flow for 90 days, and the removal flux was as high as 4 mg PFOA/m2/d at a steady state. The EPA health advisory level (70 ng/L) also was achieved over the 90 days with the influent PFOA at an environmentally relevant concentration of 500 ng/L. The results document a sustainable catalytic method for the detoxification of PFOA-contaminated water.


Assuntos
Fluorocarbonos , Nanopartículas Metálicas , Caprilatos , Paládio , Platina
15.
Environ Sci Technol ; 55(21): 14836-14843, 2021 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-34496574

RESUMO

Per- and polyfluoroalkyl substances (PFASs) comprise a group of widespread and recalcitrant contaminants that are attracting increasing concern due to their persistence and adverse health effects. This study evaluated removal of one of the most prevalent PFAS, perfluorooctanoic acid (PFOA), in H2-based membrane catalyst-film reactors (H2-MCfRs) coated with palladium nanoparticles (Pd0NPs). Batch tests documented that Pd0NPs catalyzed hydrodefluorination of PFOA to partially fluorinated and nonfluorinated octanoic acids; the first-order rate constant for PFOA removal was 0.030 h-1, and a maximum defluorination rate was 16 µM/h in our bench-scale MCfR. Continuous-flow tests achieved stable long-term depletion of PFOA to below the EPA health advisory level (70 ng/L) for up to 70 days without catalyst loss or deactivation. Two distinct mechanisms for Pd0-based PFOA removal were identified based on insights from experimental results and density functional theory (DFT) calculations: (1) nonreactive chemisorption of PFOA in a perpendicular orientation on empty metallic surface sites and (2) reactive defluorination promoted by physiosorption of PFOA in a parallel orientation above surface sites populated with activated hydrogen atoms (Hads*). Pd0-based catalytic reduction chemistry and continuous-flow treatment may be broadly applicable to the ambient-temperature destruction of other PFAS compounds.


Assuntos
Fluorocarbonos , Nanopartículas Metálicas , Adsorção , Caprilatos , Paládio
16.
ACS Appl Mater Interfaces ; 13(35): 41956-41967, 2021 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-34432417

RESUMO

High energy capacity silicon (Si) anodes in Li-ion batteries incorporate polymeric binders to improve cycle life, which is otherwise limited by large volume and stress fluctuations during charging/discharging cycles. Several properties of the polymeric binder play a role in achieving optimal battery performance, including interfacial adhesion strength, mechanical elasticity, and lithium-ion conduction rate. In this work, we utilize atomistic simulations with the ReaxFF force field and complementary experiments to investigate how these properties dictate the performance of Si/binder anodes. We study three C/N/H-based polymer binders with varying structures (pyrolyzed polyacrylonitrile (PPAN), polyacrylonitrile (PAN), and polyaniline (PANI)) to determine how the structure-property characteristics of the binder affect performance. The Si/binder adhesion analysis reveals some counter-intuitive results: although an individual PANI chain has a stronger affinity to Si compared to PPAN, the PANI bulk binds weaker to the Si surface. Interfacial structural analyses from simulations of the bulk phase show that PANI chains have poor stacking at the interface, while PPAN chains exhibit dense and highly ordered stacking behavior, leading to stronger adhesion. PPAN also has a lower Young's modulus compared to PANI and PAN owing to its ordered and less entangled bulk structure. This added elasticity better accommodates volume changes associated with cycling, making it a more suitable candidate for Si anodes. Finally, both simulations and experimental measurements of Li-ion diffusion rates show higher Li mobility through PPAN than PAN and PANI because the ordered stacking of PPAN chains creates channels that are favorable for Li diffusion to the Si surface. Galvanostatic charge-discharge cycling experiments show that PPAN is indeed a highly promising binder for Si anodes in Li-ion batteries, retaining a capacity of ∼1400 mAh g-1 for 150 cycles. This work demonstrates that the orientation and structure of the polymer at and near the interface are essential for optimizing binder performance as well as showcases the initial steps for binder evaluation, selection, and application for electrodes in Li-ion batteries.

17.
Phys Chem Chem Phys ; 23(2): 1401-1413, 2021 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-33393543

RESUMO

Identifying catalysts for non-oxidative propane dehydrogenation has become increasingly important due to the increasing demand for propylene coupled to decreasing propylene production from steam cracking as we shift to lighter hydrocarbon feedstocks. Commercialized propane dehydrogenation (PDH) catalysts are based on Pt or Cr, which are expensive or toxic, respectively. Recent experimental work has demonstrated that earth-abundant and environmentally-benign metals, such as iron, form in situ carbide phases that exhibit good activity and high selectivity for PDH. In this work, we used density functional theory (DFT) to better understand why the PDH reaction is highly selective on Fe3C surfaces. We use ab initio thermodynamics to identify stable Fe3C surface terminations as a function of reaction conditions, which then serve as our models for investigating rate-determining and selectivity-determining kinetic barriers during PDH. We find that carbon-rich surfaces show much higher selectivity for propylene production over competing cracking reactions compared to iron-rich surfaces, which is determined by comparing the propylene desorption barrier to the C-H scission barrier for dehydrogenation steps beyond propylene. Electronic structure analyses of the d-band center and the crystal orbital Hamilton population (COHP) of the carbides demonstrate that the high selectivity of carbon-rich surfaces originates from the disruption of surface Fe ensembles via carbon. Finally, we investigated the role of phosphate in suppressing coke formation and found that the electron-withdrawing character of phosphate destabilizes surface carbon.

18.
Proc Natl Acad Sci U S A ; 118(2)2021 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-33380454

RESUMO

Electrochemical CO2 or CO reduction to high-value C2+ liquid fuels is desirable, but its practical application is challenged by impurities from cogenerated liquid products and solutes in liquid electrolytes, which necessitates cost- and energy-intensive downstream separation processes. By coupling rational designs in a Cu catalyst and porous solid electrolyte (PSE) reactor, here we demonstrate a direct and continuous generation of pure acetic acid solutions via electrochemical CO reduction. With optimized edge-to-surface ratio, the Cu nanocube catalyst presents an unprecedented acetate performance in neutral pH with other liquid products greatly suppressed, delivering a maximal acetate Faradaic efficiency of 43%, partial current of 200 mA⋅cm-2, ultrahigh relative purity of up to 98 wt%, and excellent stability of over 150 h continuous operation. Density functional theory simulations reveal the role of stepped sites along the cube edge in promoting the acetate pathway. Additionally, a PSE layer, other than a conventional liquid electrolyte, was designed to separate cathode and anode for efficient ion conductions, while not introducing any impurity ions into generated liquid fuels. Pure acetic acid solutions, with concentrations up to 2 wt% (0.33 M), can be continuously produced by employing the acetate-selective Cu catalyst in our PSE reactor.

19.
Chem Sci ; 12(48): 16092-16099, 2021 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-35024131

RESUMO

Covalent organic frameworks (COFs) are crystalline and porous organic materials attractive for photocatalysis applications due to their structural versatility and tunable optical and electronic properties. The use of photocatalysts (PCs) for polymerizations enables the preparation of well-defined polymeric materials under mild reaction conditions. Herein, we report two porphyrin-based donor-acceptor COFs that are effective heterogeneous PCs for photoinduced electron transfer-reversible addition-fragmentation chain transfer (PET-RAFT). Using density functional theory (DFT) calculations, we designed porphyrin COFs with strong donor-acceptor characteristics and delocalized conduction bands. The COFs were effective PCs for PET-RAFT, successfully polymerizing a variety of monomers in both organic and aqueous media using visible light (λ max from 460 to 635 nm) to produce polymers with tunable molecular weights (MWs), low molecular weight dispersity, and good chain-end fidelity. The heterogeneous COF PCs could also be reused for PET-RAFT polymerization at least 5 times without losing photocatalytic performance. This work demonstrates porphyrin-based COFs that are effective catalysts for photo-RDRP and establishes design principles for the development of highly active COF PCs for a variety of applications.

20.
ChemSusChem ; 11(9): 1558-1566, 2018 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-29624905

RESUMO

Adsorbed hydrogenated N-heterocycles have been proposed as co-catalysts in the mechanism of pyridine (Py)-catalyzed CO2 reduction over semiconductor photoelectrodes. Initially, adsorbed dihydropyridine (DHP*) was hypothesized to catalyze CO2 reduction through hydride and proton transfer. Formation of DHP* itself, by surface hydride transfer, indeed any hydride transfer away from the surface, was found to be kinetically hindered. Consequently, adsorbed deprotonated dihydropyridine (2-PyH- *) was then proposed as a more likely catalytic intermediate because its formation, by transfer of a solvated proton and two electrons from the surface to adsorbed Py, is predicted to be thermodynamically favored on various semiconductor electrode surfaces active for CO2 reduction, namely GaP(111), CdTe(111), and CuInS2 (112). Furthermore, this species was found to be a better hydride donor for CO2 reduction than is DHP*. Density functional theory was used to investigate various aspects of 2-PyH- * formation and its reaction with CO2 on GaP(110), a surface found experimentally to be more active than GaP(111). 2-PyH- * formation was established to also be thermodynamically viable on this surface under illumination. The full energetics of CO2 reduction through hydride transfer from 2-PyH- * were then investigated and compared to the analogous hydride transfer from DHP*. 2-PyH- * was again found to be a better hydride donor for CO2 reduction. Because of these positive results, full energetics of 2-PyH- * formation were investigated and this process was found to be kinetically feasible on the illuminated GaP(110) surface. Overall, the results presented in this contribution support the hypothesis of 2-PyH- *-catalyzed CO2 reduction on p-GaP electrodes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...