Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Light Sci Appl ; 12(1): 149, 2023 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-37328473

RESUMO

Large-area lasers are practical for generating high output powers. However, this often comes at the expense of lower beam quality due to the introduction of higher-order modes. Here, we experimentally demonstrate a new type of electrically pumped, large-area edge-emitting lasers that exhibit a high power emission (∼0.4 W) and a high-quality beam (M2∼1.25). These favorable operational characteristics are enabled by establishing a quasi PT-symmetry between the second-order mode of a large area two-mode laser cavity and that of a single-mode auxiliary partner cavity, i.e., by implementing a partial isospectrality between the two coupled cavities. This in turn enlarges the effective volume of the higher-order modes. As a result, a selective pump applied via current injection into the main laser cavity can provide a stronger modal gain to the fundamental mode, and thus lead to lasing in the single mode regime after filtering out higher order transverse modes. The reported experimental results confirm this intuitive picture and are in good agreement with both theoretical and numerical analysis. Above all, the employed material platform and fabrication process are compatible with the industrial standards of semiconductor lasers. This work provides the first clear demonstration, beyond previous proof-of-concept studies, of the utility of PT-symmetry in building laser geometries with enhanced performance and, at the same time, useful output power levels and emission characteristics.

2.
Opt Express ; 30(18): 31539-31549, 2022 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-36242234

RESUMO

One of the persistent obstacles for high-power laser diodes (LDs) has been the catastrophic optical mirror damage (COMD), which limits the operating power level and lifetime of commercial high-power LDs. The output facet of LD reaches a critical temperature resulting in COMD, which is an irreversible device failure. Here, we fabricate multi-section LDs by tailoring the waveguide structure along the cavity that separates the output facet from the heat-generating lasing region. In this method, the LD waveguide is divided into electrically isolated laser and window sections along the cavity. The laser section is pumped at a high current to achieve high output power, and the window is biased at a low current with negligible heat generation. This design restricts the thermal impact of the laser section on the facet, and the window section allows lossless transport of the laser to the output facet. The lasers were operated continuous-wave up to the maximum achievable power. While standard LDs show COMD failures, the multi-section waveguide LDs are COMD-free. Our technique and results provide a pathway for high-reliability LDs, which would find diverse applications in semiconductor lasers.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA