Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Chromatogr Sci ; 61(4): 375-392, 2023 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-35441225

RESUMO

HPLC-PDA, LC-MS/MS methods were developed for simultaneous determination of a group of oxidative stress biomarkers (OSBs); 2dA, 2dC, 2dU, 3NLT, 5HMU and 8OHdG in 10 simulated artificial body fluids. O-phosphoric acid and methanol composed mobile phases A and B for gradient elution in HPLC-PDA using ODS-2 column. Linearity obtained for 1.0×10-6-1.0×10-4M range. LODs were 1.73×10-6, 1.19×10-6, 2.59×10-6, 1.40×10-6, 2.21×10-6 and 4.07×10-6M for 2dU, 8OHdG, 2dA, 2dC, 5HMU and 3NLT, respectively. LOQs were 5.29×10-6, 4.02×10-6, 6.82×10-6, 4.02×10-6, 6.82×10-6 and 9.92×10-6M. About 10 mM aqueous ammonium acetate solution and methanol containing 0.1% (v/v) formic acid composed mobile phases A and B for gradient elution in LC-MS/MS. Linearity obtained for 1.0×10-8-1.0×10-6M range. LODs were 2.88×10-10, 1.01×10-8, 3.38×10-9, 1.36×10-7, 1.81×10-7 and 1.40×10-8M for 2dU, 8OHdG, 2dA, 2dC, 5HMU and 3NLT, respectively. LOQs were 9.37×10-10, 3.22×10-8, 1.91×10-8, 4.53×10-7, 5.90×10-7 and 2.18×10-8M. Both methods were validated using ICH Q2(R1) guideline. Specificity, linearity, range, accuracy, precision, reproducibility, LOD, LOQ and recovery were achieved. Chemometric analysis was performed on raw PDA and MS data to check their significance for discrimination of OSBs. Sets of single and triple quadrupole fragmentations were evaluated for principle component analysis. Chosen number of PCs successfully distinguished OSBs of interest.


Assuntos
Quimiometria , Espectrometria de Massas em Tandem , Cromatografia Líquida de Alta Pressão/métodos , Cromatografia Líquida/métodos , Espectrometria de Massas em Tandem/métodos , 8-Hidroxi-2'-Desoxiguanosina , Reprodutibilidade dos Testes , Metanol , Estresse Oxidativo , Biomarcadores
2.
Environ Technol ; : 1-15, 2022 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-36263868

RESUMO

The lack of safe drinking water is among the main problems to be faced by many areas of the world due to climate change, unrestrained population increases, and unsustainable usage of water sources. Therefore, research projects focusing on water quality, pollution, and control for sustainable water sources are in high demand to manage any unexpected changes in water sources. Drinking water sources may be contaminated with organic and inorganic chemicals, disinfection by-products, and microorganisms. Different treatment processes to remove these contaminants from water may be limited because of their high costs and time-consuming or require a multiple-barrier approach to improving performance. Therefore, there is a great need to develop an effective process for removing impurities. The primary objective of this study is to assess the effectiveness of algae-based activated carbons and develop a unique, low-cost sustainable process for wastewater treatment. Activated carbons were produced from pelletised algae powder using carbonisation and chemical activation. Chemical activation was carried out with calcium chloride (CaCl2) and zinc chloride (ZnCl2) as chemical agents. Furthermore, Brunauer-Emmett-Teller (BET) along with scanning electron microscopy (SEM) techniques were used to analyse the morphology, surface area, as well as the porosity of the prepared activated carbons to build a water column filter. Based on the results, algae-based carbon with CaCl2 activation provided a better surface area (197.7486 m2/g) and cumulative pore volume (0.105284 cm3/g). The filtration process using algae-based activated carbon can be a promising technique for water treatment with some further improvement and modifications.

3.
J Hazard Mater ; 343: 29-35, 2018 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-28938156

RESUMO

In this study, we investigated the performance of conventional (coagulation/flocculation→powdered activated carbon [PAC] adsorption) and advanced treatment (coagulation/flocculation→PAC adsorption→submerged ultrafiltration [UF] membrane) processes separately and sequentially for the removal of total (intra- and extracellular) microcystin. Results of the conventional treatment process demonstrated that coagulation/flocculation alone was not effective (up to 70%) for the removal of total microcystin, while the uptake of total microcystin was achieved up to 84% by PAC adsorption (PAC dose of 20mg/L). In addition, the adsorption kinetic mechanism of PAC was also examined using several kinetic models. Results showed that the pseudo-second order (PSOM) and Weber-Morris intraparticle diffusion model (IPDM) are the most suitable models for this study (r2>0.98 and p-values ≤0.05). On the other hand, up to 94% of microcystin was effectively removed when the coagulation/flocculation and PAC systems were combined with UF membranes. Also, the permeate concentration was found to be 0.3mg/L, which is below the World Health Organization (WHO) guideline value of 1µg/L. Overall results indicated that higher removal of microcystin occurred using the advanced treatment process. Therefore, this combined system appears to be a promising treatment technique for the removal of total microcystin.


Assuntos
Microcistinas/química , Poluentes Químicos da Água/química , Purificação da Água/métodos , Adsorção , Carbono/química , Floculação , Membranas Artificiais , Ultrafiltração/instrumentação , Ultrafiltração/métodos , Purificação da Água/instrumentação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA