Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biophys J ; 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38425041

RESUMO

Binding of the T cell receptor complex to its ligand, the subsequent molecular rearrangement, and the concomitant cell-scale shape changes represent the very first steps of adaptive immune recognition. The first minutes of the interaction of T cells and antigen presenting cells have been extensively scrutinized; yet, gaps remain in our understanding of how the biophysical properties of the environment may impact the sequence of events. In particular, many pioneering experiments were done on immobilized ligands and gave major insights into the process of T cell activation, whereas later experiments have indicated that ligand mobility was of paramount importance, especially to enable the formation of T cell receptor clusters. Systematic experiments to compare and reconcile the two schools are still lacking. Furthermore, recent investigations using compliant substrates have elucidated other intriguing aspects of T cell mechanics. Here we review experiments on interaction of T cells with planar artificial antigen presenting cells to explore the impact of mechanics on adhesion and actin morphodynamics during the spreading process. We enumerate a sequence tracing first contact to final spread state that is consistent with current understanding. Finally, we interpret the presented experimental results in light of a mechanical model that captures all the different morphodynamic states.

2.
Sci Rep ; 13(1): 15652, 2023 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-37730849

RESUMO

The role of force application in immune cell recognition is now well established, the force being transmitted between the actin cytoskeleton to the anchoring ligands through receptors such as integrins. In this chain, the mechanics of the cytoskeleton to receptor link, though clearly crucial, remains poorly understood. To probe this link, we combine mechanical extraction of membrane tubes from T cells using optical tweezers, and fitting of the resulting force curves with a viscoelastic model taking into account the cell and relevant molecules. We solicit this link using four different antibodies against various membrane bound receptors: antiCD3 to target the T Cell Receptor (TCR) complex, antiCD45 for the long sugar CD45, and two clones of antiCD11 targeting open or closed conformation of LFA1 integrins. Upon disruption of the cytoskeleton, the stiffness of the link changes for two of the receptors, exposing the existence of a receptor to cytoskeleton link-namely TCR-complex and open LFA1, and does not change for the other two where a weaker link was expected. Our integrated approach allows us to probe, for the first time, the mechanics of the intracellular receptor-cytoskeleton link in immune cells.


Assuntos
Citoesqueleto , Nanotubos , Microtúbulos , Receptores Imunológicos , Integrinas , Receptores de Antígenos de Linfócitos T
3.
J Cell Sci ; 136(8)2023 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-37083041

RESUMO

Focal adhesions are composed of transmembrane integrins, linking the extracellular matrix to the actomyosin cytoskeleton, via cytoplasmic proteins. Adhesion depends on the activation of integrins. Talin and kindlin proteins are intracellular activators of integrins that bind to ß-integrin cytoplasmic tails. Integrin activation and clustering through extracellular ligands guide the organization of adhesion complexes. However, the roles of talin and kindlin in this process are poorly understood. To determine the contribution of talin, kindlin, lipids and actomyosin in integrin clustering, we used a biomimetic in vitro system, made of giant unilamellar vesicles, containing transmembrane integrins (herein αIIbß3), with purified talin (talin-1), kindlin (kindlin-2, also known as FERMT2) and actomyosin. Here, we show that talin and kindlin individually have the ability to cluster integrins. Talin and kindlin synergize to induce the formation of larger integrin clusters containing the three proteins. Comparison of protein density reveals that kindlin increases talin and integrin density, whereas talin does not affect kindlin and integrin density. Finally, kindlin increases integrin-talin-actomyosin coupling. Our study unambiguously demonstrates how kindlin and talin cooperate to induce integrin clustering, which is a major parameter for cell adhesion.


Assuntos
Integrinas , Talina , Integrinas/metabolismo , Talina/genética , Talina/metabolismo , Actomiosina , Proteínas de Membrana/metabolismo , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Complexo Glicoproteico GPIIb-IIIa de Plaquetas/metabolismo , Adesão Celular
4.
Methods Mol Biol ; 2654: 123-135, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37106179

RESUMO

Reflection interference contrast microscopy (RICM) is an optical microscopy technique ideally suited for imaging adhesion. While RICM (and the closely related interference reflection microscopy (IRM)) has been extensively used qualitatively or semiquantitatively to image cells, including immune cells, it can also be used quantitatively to measure membrane to surface distance, especially for model membranes. Here, we present a protocol for RICM and IRM imaging and the details of semiquantitative and quantitative analysis.


Assuntos
Microscopia , Adesão Celular , Membranas , Microscopia de Interferência/métodos , Membrana Celular
5.
Front Immunol ; 13: 898558, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35990636

RESUMO

For more than a couple of decades now, "force" has been recognized as an important physical parameter that cells employ to adapt to their microenvironment. Whether it is externally applied, or internally generated, cells use force to modulate their various actions, from adhesion and migration to differentiation and immune function. T lymphocytes use such mechano-sensitivity to decipher signals when recognizing cognate antigens presented on the surface of antigen presenting cells (APCs), a critical process in the adaptive immune response. As such, many techniques have been developed and used to measure the forces felt/exerted by these small, solitary and extremely reactive cells to decipher their influence on diverse T cell functions, primarily activation. Here, we focus on traction force microscopy (TFM), in which a deformable substrate, coated with the appropriate molecules, acts as a force sensor on the cellular scale. This technique has recently become a center of interest for many groups in the "ImmunoBiophysics" community and, as a consequence, has been subjected to refinements for its application to immune cells. Here, we present an overview of TFM, the precautions and pitfalls, and the most recent developments in the context of T cell immunology.


Assuntos
Fenômenos Mecânicos , Tração , Microscopia de Força Atômica/métodos
6.
STAR Protoc ; 3(1): 101133, 2022 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-35128476

RESUMO

Traction force microscopy (TFM) is a popular technique for studying cellular stresses; however, the reproducible fabrication of ultrasoft substrates for the reliable detection of weak cellular stresses (below 100 Pa) remains a challenge. Here, we describe a simple in vitro TFM protocol using such ultrasoft protein-coated polyacrylamide gels and wide-field fluorescence microscopy. We complement the protocol with open-source and in-house scripts for data analysis for the easy quantification of traction stresses, which is demonstrated here using peripheral blood mononuclear cells.


Assuntos
Leucócitos Mononucleares , Tração , Resinas Acrílicas , Microscopia de Força Atômica/métodos , Microscopia de Fluorescência/métodos
7.
Soft Matter ; 17(44): 10101-10107, 2021 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-34723306

RESUMO

Cell adhesion is an important cellular process and is mediated by adhesion proteins residing on the cell membrane. Sometimes, two types of linker proteins are involved in adhesion, and they can segregate to form domains through a poorly understood size-exclusion process. We present an experimental and theoretical study of adhesion via linkers of two different sizes, realised in a mimetic model-system, based on giant unilamellar vesicles interacting with supported lipid bilayers. Here, adhesion is mediated by DNA linkers with two different lengths, but with the same binding enthalpy. We study the organisation of these linkers into domains as a function of relative fraction of long and short DNA constructs. Experimentally, we find that, irrespective of the composition, the adhesion domains are uniform with coexisting DNA bridge types, despite their relative difference in length of 9 nm. However, simulations suggest formation of nanodomains of the minority fraction at short length scales, which is below the optical resolution of the microscope. The nano-aggregation is more significant for long bridges, which are also more stable.


Assuntos
Bicamadas Lipídicas , Lipossomas Unilamelares , Fenômenos Biomecânicos , Biofísica , Membranas
8.
Int J Mol Sci ; 22(12)2021 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-34199292

RESUMO

Giant unilamellar vesicles (GUV) are powerful tools to explore physics and biochemistry of the cell membrane in controlled conditions. For example, GUVs were extensively used to probe cell adhesion, but often using non-physiological linkers, due to the difficulty of incorporating transmembrane adhesion proteins into model membranes. Here we describe a new protocol for making GUVs incorporating the transmembrane protein integrin using gel-assisted swelling. We report an optimised protocol, enumerating the pitfalls encountered and precautions to be taken to maintain the robustness of the protocol. We characterise intermediate steps of small proteoliposome formation and the final formed GUVs. We show that the integrin molecules are successfully incorporated and are functional.


Assuntos
Géis/química , Integrinas/metabolismo , Lipossomas Unilamelares/química , Adesão Celular , Fluorescência , Humanos , Bicamadas Lipídicas/metabolismo , Lipídeos/química , Tamanho da Partícula
9.
Nano Lett ; 21(13): 5606-5613, 2021 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-34170136

RESUMO

Protein patterning has emerged as a powerful means to interrogate adhering cells. However, the tools to apply a sub-micrometer periodic stimulus and the analysis of the response are still being standardized. We propose a technique combining electron beam lithography and surface functionalization to fabricate nanopatterns compatible with advanced imaging. The repetitive pattern enables a deep-learning algorithm to reveal that T cells organize their membrane and actin network differently depending upon whether the ligands are clustered or homogeneously distributed, an effect invisible to the unassisted human eye even after extensive image analysis. This fabrication and analysis toolbox should be useful, both together and separately, for exploring general correlation between a spatially structured subcellular stimulation and a subtle cellular response.


Assuntos
Inteligência Artificial , Linfócitos T , Humanos , Inteligência , Ligantes , Impressão
10.
J Colloid Interface Sci ; 598: 464-473, 2021 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-33951546

RESUMO

HYPOTHESIS: Interaction of cellular membranes with biointerfaces is of vital importance for a number of medical devices and implants. Adhesiveness of these surfaces and cells is often regulated by depositing a layer of bovine serum albumin (BSA) or other protein coatings. However, anomalously large separations between phospholipid membranes and the biointerfaces in various conditions and buffers have been observed, which could not be understood using available theoretical arguments. METHODS: Using the Lifshitz theory, we here evaluate the distance-dependent Hamaker coefficient describing the dispersion interaction between a biointerface and a membrane to understand the relative positioning of two surfaces. Our theoretical modeling is supported by experiments where the biointerface is represented by a glass substrate with deposited BSA and protein layers. These biointerfaces are allowed to interact with giant unilamellar vesicles decorated with polyethylene glycol (PEG) using PEG lipids to mimic cellular membranes and their pericellular coat. RESULTS: We demonstrate that careful treatment of the van der Waals interactions is critical for explaining the lack of adhesiveness of the membranes with protein-decorated biointerfaces. We show that BSA alone indeed passivates the glass, but depositing an additional protein layer on the surface BSA, or producing multiple layers of proteins and BSA results in repulsive dispersion forces responsible for 100 nm large equilibrium separations between the two surfaces.


Assuntos
Polietilenoglicóis , Soroalbumina Bovina , Adesividade , Vidro
11.
Proc Natl Acad Sci U S A ; 116(13): 5908-5913, 2019 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-30850545

RESUMO

Mechanosensing by T cells through the T cell receptor (TCR) is at the heart of immune recognition. While the mechanobiology of the TCR at the molecular level is increasingly well documented, its link to cell-scale response is poorly understood. Here we explore T cell spreading response as a function of substrate rigidity and show that remarkably, depending on the surface receptors stimulated, the cellular response may be either biphasic or monotonous. When adhering solely via the TCR complex, T cells respond to environmental stiffness in an unusual fashion, attaining maximal spreading on an optimal substrate stiffness comparable to that of professional antigen-presenting cells. However, in the presence of additional ligands for the integrin LFA-1, this biphasic response is abrogated and the cell spreading increases monotonously with stiffness up to a saturation value. This ligand-specific mechanosensing is effected through an actin-polymerization-dependent mechanism. We construct a mesoscale semianalytical model based on force-dependent bond rupture and show that cell-scale biphasic or monotonous behavior emerges from molecular parameters. As the substrate stiffness is increased, there is a competition between increasing effective stiffness of the bonds, which leads to increased cell spreading and increasing bond breakage, which leads to decreased spreading. We hypothesize that the link between actin and the receptors (TCR or LFA-1), rather than the ligand/receptor linkage, is the site of this mechanosensing.


Assuntos
Mecanotransdução Celular , Receptores de Antígenos de Linfócitos T/metabolismo , Linfócitos T/metabolismo , Linhagem Celular , Humanos , Imunidade Celular , Cinética , Ligantes , Miosinas/metabolismo , Especificidade por Substrato , Linfócitos T/imunologia
12.
Front Immunol ; 9: 2085, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30279692

RESUMO

We created APC-mimetic synthetic substrates to study the impact of ligand clustering on T cell activation and spreading. The substrates exhibit antibodies directed against the TCR-complex in the form of a patterned array of sub micrometric dots surrounded by a fluid supported lipid bilayer (SLB) which may itself be functionalized with another bio-molecule. We show that for T cell adhesion mediated by T cell receptor (TCR) alone, in the patterned, but not in the corresponding homogeneous controls, the TCR, ZAP-70 and actin are present in the form of clusters or patches that co-localize with the ligand-dots. However, global cell scale parameters like cell area and actin distribution are only weakly impacted by ligand clustering. In presence of ICAM-1 - the ligand of the T cell integrin LFA-1 - on the SLB, the TCR is still clustered due to the patterning of its ligands, but now global parameters are also impacted. The actin organization changes to a peripheral ring, resembling the classical actin distribution seen on homogeneous substrates, the patterned membrane topography disappears and the membrane is flat, whereas the cell area increases significantly. These observations taken together point to a possible pivotal role for LFA-1 in amplifying the effect of TCR-clustering. No such effect is evident for co-engagement of CD28, affected via its ligand B7.2. Unlike on ICAM-1, on B7.2 cell spreading and actin organization are similar for homogeneous and patterned substrates. However, TCR and ZAP-70 clusters are still formed in the patterned case. These results indicate complementary role for LFA-1 and CD28 in the regulation and putative coupling of TCR micro-clusters to actin. The engineered substrates presented here clearly have the potential to act as platform for fundamental research in immune cell biology, as well as translational analyses in immunotherapy, for example to screen molecules for their role in T cell adhesion/activation.


Assuntos
Células Apresentadoras de Antígenos/imunologia , Biomimética/métodos , Antígeno-1 Associado à Função Linfocitária/metabolismo , Complexos Multiproteicos/metabolismo , Receptores de Antígenos de Linfócitos T/metabolismo , Linfócitos T/imunologia , Actinas/metabolismo , Células Apresentadoras de Antígenos/química , Antígenos CD28/metabolismo , Humanos , Molécula 1 de Adesão Intercelular/metabolismo , Células Jurkat , Bicamadas Lipídicas/química , Ativação Linfocitária , Agregação de Receptores , Receptor Cross-Talk , Transdução de Sinais , Proteína-Tirosina Quinase ZAP-70/metabolismo
13.
Nano Lett ; 18(10): 6544-6550, 2018 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-30179011

RESUMO

There are very few techniques to reconstruct the shape of a cell at nanometric resolution, and those that exist are almost exclusively based on fluorescence, implying limitations due to staining constraints and artifacts. Reflection interference contrast microscopy (RICM), a label-free technique, permits the measurement of nanometric distances between refractive objects. However, its quantitative application to cells has been largely limited due to the complex interferometric pattern caused by multiple reflections on internal or thin structures like lamellipodia. Here we introduce 3D reflection interference contrast nanoscopy, 3D-RICN, which combines information from multiple illumination wavelengths and aperture angles to characterize the lamellipodial region of an adherent cell in terms of its distance from the surface and its thickness. We validate this new method by comparing data obtained on fixed cells imaged with atomic force microscopy and quantitative phase imaging. We show that as expected, cells adhering to micropatterns exhibit a radial symmetry for the lamellipodial thickness. We demonstrate that the substrate-lamellipod distance may be as high as 100 nm. We also show how the method applies to living cells, opening the way for label-free dynamical study of cell structures with nanometric resolution.

14.
Nano Lett ; 17(7): 4284-4290, 2017 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-28580787

RESUMO

Living cells sense the physical and chemical nature of their micro/nano environment with exquisite sensitivity. In this context, there is a growing need to functionalize soft materials with micro/nanoscale biochemical patterns for applications in mechanobiology. This, however, is still an engineering challenge. Here a new method is proposed, where submicronic protein-patterns are first formed on glass and are then printed on to an elastomer. The degree of transfer is shown to be governed mainly by hydrophobic interactions and to be influenced by grafting an appropriate fluorophore onto the core protein of interest. The transfer mechanism is probed by measuring the forces of adhesion/cohesion using atomic force microscopy. The transfer of functional arrays of dots with size down to about 400 nm, on elastomers with stiffness ranging from 3 kPa to 7 MPa, is demonstrated. Pilot studies on adhesion of T lymphocytes on such soft patterned substrates are reported.


Assuntos
Nanopartículas/química , Soroalbumina Bovina/química , Elastômeros de Silicone/química , Animais , Bovinos , Adesão Celular , Corantes , Dimetilpolisiloxanos/química , Corantes Fluorescentes/química , Vidro/química , Humanos , Interações Hidrofóbicas e Hidrofílicas , Nylons/química , Imagem Óptica , Tamanho da Partícula , Poloxâmero/química , Impressão , Propriedades de Superfície , Linfócitos T/fisiologia , Xantenos
15.
J Vis Exp ; (122)2017 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-28518120

RESUMO

Currently there is considerable interest in creating ordered arrays of adhesive protein islands in a sea of passivated surface for cell biological studies. In the past years, it has become increasingly clear that living cells respond, not only to the biochemical nature of the molecules presented to them but also to the way these molecules are presented. Creating protein micro-patterns is therefore now standard in many biology laboratories; nano-patterns are also more accessible. However, in the context of cell-cell interactions, there is a need to pattern not only proteins but also lipid bilayers. Such dual proteo-lipidic patterning has so far not been easily accessible. We offer a facile technique to create protein nano-dots supported on glass and propose a method to backfill the inter-dot space with a supported lipid bilayer (SLB). From photo-bleaching of tracer fluorescent lipids included in the SLB, we demonstrate that the bilayer exhibits considerable in-plane fluidity. Functionalizing the protein dots with fluorescent groups allows us to image them and to show that they are ordered in a regular hexagonal lattice. The typical dot size is about 800 nm and the spacing demonstrated here is 2 microns. These substrates are expected to serve as useful platforms for cell adhesion, migration and mechano-sensing studies.


Assuntos
Técnicas de Cultura de Células , Bicamadas Lipídicas/química , Nanoestruturas/química , Proteínas/química , Adesão Celular , Vidro/química , Ligantes , Linfócitos T/fisiologia
16.
Soft Matter ; 12(21): 4755-68, 2016 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-27142463

RESUMO

We probe the bending fluctuations of bio-membranes using highly deflated giant unilamellar vesicles (GUVs) bound to a substrate by a weak potential arising from generic interactions. The substrate is either homogeneous, with GUVs bound only by the weak potential, or is chemically functionalized with a micro-pattern of very strong specific binders. In both cases, the weakly adhered membrane is seen to be confined at a well-defined distance above the surface while it continues to fluctuate strongly. We quantify the fluctuations of the weakly confined membrane at the substrate proximal surface as well as of the free membrane at the distal surface of the same GUV. This strategy enables us to probe in detail the damping of fluctuations in the presence of the substrate, and to independently measure the membrane tension and the strength of the generic interaction potential. Measurements were done using two complementary techniques - dynamic optical displacement spectroscopy (DODS, resolution: 20 nm, 10 µs), and dual wavelength reflection interference contrast microscopy (DW-RICM, resolution: 4 nm, 50 ms). After accounting for the spatio-temporal resolution of the techniques, an excellent agreement between the two measurements was obtained. For both weakly confined systems we explore in detail the link between fluctuations on the one hand and membrane tension and the interaction potential on the other hand.


Assuntos
Membranas , Lipossomas Unilamelares , Fenômenos Biofísicos , Microscopia de Interferência , Modelos Teóricos , Análise Espectral
17.
Integr Biol (Camb) ; 8(3): 287-301, 2016 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-26887857

RESUMO

We investigate the adhesion and molecular organization of the plasma membrane of T lymphocytes interacting with a surrogate antigen presenting cell comprising glass supported ordered arrays of antibody (α-CD3) nano-dots dispersed in a non-adhesive matrix of polyethylene glycol (PEG). The local membrane adhesion and topography, as well as the distribution of the T cell receptors (TCRs) and the kinase ZAP-70, are influenced by dot-geometry, whereas the cell spreading area is determined by the overall average density of the ligands rather than specific characteristics of the dots. TCR clusters are recruited preferentially to the nano-dots and the TCR cluster size distribution has a weak dot-size dependence. On the patterns, the clusters are larger, more numerous, and more enriched in TCRs, as compared to the homogeneously distributed ligands at comparable concentrations. These observations support the idea that non-ligated TCRs residing in the non-adhered parts of the proximal membrane are able to diffuse and enrich the existing clusters at the ligand dots. However, long distance transport is impaired and cluster centralization in the form of a central supramolecular cluster (cSMAC) is not observed. Time-lapse imaging of early cell-surface contacts indicates that the ZAP-70 microclusters are directly recruited to the site of the antibody dots and this process is concomitant with membrane adhesion. These results together point to a complex interplay of adhesion, molecular organization and activation in response to spatially modulated stimulation.


Assuntos
Linfócitos T/imunologia , Linfócitos T/metabolismo , Células Apresentadoras de Antígenos/imunologia , Células Apresentadoras de Antígenos/metabolismo , Adesão Celular/imunologia , Membrana Celular/imunologia , Membrana Celular/metabolismo , Proteínas de Fluorescência Verde/metabolismo , Humanos , Células Jurkat , Ligantes , Nanoestruturas , Receptores de Antígenos de Linfócitos T/metabolismo , Transdução de Sinais , Análise de Célula Única , Proteína-Tirosina Quinase ZAP-70/metabolismo
18.
Nano Lett ; 15(8): 5178-84, 2015 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-26161675

RESUMO

Arrays of protein nanodots with dot-size tuned independently of spacing (e.g., ∼100 to 600 nm diameter for 900 nm spacing) are fabricated. The mechanism of size control is demonstrated, by numerical simulations, to arise from shadow effects during deposition of a sacrificial metal mask. We functionalize the nanodots with antibodies and embed them in a polymer-cushion or in lipid-bilayers or transfer them to soft elastomers. Their ability to influence cell architecture and local membrane organization is demonstrated in T-lymphocytes, using reflection interference contrast and total internal reflection fluorescence microscopy.

19.
Biochim Biophys Acta ; 1853(11 Pt B): 2984-91, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26028591

RESUMO

The dynamics of formation of macromolecular structures in adherent membranes is a key to a number of cellular processes. However, the interplay between protein reaction kinetics, diffusion and the morphology of the growing domains, governed by membrane mediated interactions, is still poorly understood. Here we show, experimentally and in simulations, that a rich phase diagram emerges from the competition between binding, cooperativity, molecular crowding and membrane spreading. In the cellular context, the spontaneously-occurring organization of adhesion domains in ring-like morphologies is particularly interesting. These are stabilized by the crowding of bulky proteins, and the membrane-transmitted correlations between bonds. Depending on the density of the receptors, this phase may be circumvented, and instead, the adhesions may grow homogeneously in the contact zone between two membranes. If the development of adhesion occurs simultaneously with membrane spreading, much higher accumulation of binders can be achieved depending on the velocity of spreading. The mechanisms identified here, in the context of our mimetic model, may shed light on the structuring of adhesions in the contact zones between two living cells. This article is part of a Special Issue entitled: Mechanobiology.


Assuntos
Membrana Celular/química , Membranas Artificiais , Modelos Químicos , Membrana Celular/metabolismo
20.
Biophys J ; 107(11): 2629-38, 2014 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-25468342

RESUMO

Spreading of T cells on antigen presenting cells is a crucial initial step in immune response. Spreading occurs through rapid morphological changes concomitant with the reorganization of surface receptors and of the cytoskeleton. Ligand mobility and frictional coupling of receptors to the cytoskeleton were separately recognized as important factors but a systematic study to explore their biophysical role in spreading was hitherto missing. To explore the impact of ligand mobility, we prepared chemically identical substrates on which molecules of anti-CD3 (capable of binding and activating the T cell receptor complex), were either immobilized or able to diffuse. We quantified the T cell spreading area and cell edge dynamics using quantitative reflection interference contrast microscopy, and imaged the actin distribution. On mobile ligands, as compared to fixed ligands, the cells spread much less, the actin is centrally, rather than peripherally distributed and the edge dynamics is largely altered. Blocking myosin-II or adding molecules of ICAM1 on the substrate largely abrogates these differences. We explain these observations by building a model based on the balance of forces between activation-dependent actin polymerization and actomyosin-generated tension on one hand, and on the frictional coupling of the ligand-receptor complexes with the actin cytoskeleton, the membrane and the substrate, on the other hand. Introducing the measured edge velocities in the model, we estimate the coefficient of frictional coupling between T Cell receptors or LFA-1 and the actin cytoskeleton. Our results provide for the first time, to our knowledge, a quantitative framework bridging T cell-specific biology with concepts developed for integrin-based mechanisms of spreading.


Assuntos
Movimento Celular , Forma Celular , Fricção , Linfócitos T/citologia , Complexo 2-3 de Proteínas Relacionadas à Actina/metabolismo , Actinas/metabolismo , Humanos , Molécula 1 de Adesão Intercelular/metabolismo , Células Jurkat , Ligantes , Miosina Tipo II/metabolismo , Pseudópodes/metabolismo , Linfócitos T/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...