Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 19(23): 15356-15367, 2017 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-28574545

RESUMO

We report 2D electronic spectroscopy on the photosystem II core complex (PSII CC) at 77 K under different polarization conditions. A global analysis of the high time-resolution 2D data shows rapid, sub-100 fs energy transfer within the PSII CC. It also reveals the 2D spectral signatures of slower energy equilibration processes occurring on several to hundreds of picosecond time scales that are consistent with previous work. Using a recent structure-based model of the PSII CC [Y. Shibata, S. Nishi, K. Kawakami, J. R. Shen and T. Renger, J. Am. Chem. Soc., 2013, 135, 6903], we simulate the energy transfer in the PSII CC by calculating auxiliary time-resolved fluorescence spectra. We obtain the observed sub-100 fs evolution, even though the calculated electronic energy shows almost no dynamics at early times. On the other hand, the electronic-vibrational interaction energy increases considerably over the same time period. We conclude that interactions with vibrational degrees of freedom not only induce population transfer between the excitonic states in the PSII CC, but also reshape the energy landscape of the system. We suggest that the experimentally observed ultrafast energy transfer is a signature of excitonic-polaron formation.


Assuntos
Complexo de Proteína do Fotossistema II/química , Clorofila/química , Elétrons , Transferência de Energia , Complexo de Proteína do Fotossistema II/metabolismo , Espectrometria de Fluorescência
2.
J Phys Chem Lett ; 8(3): 679-683, 2017 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-28099020

RESUMO

Characterizing ultrafast energy and charge transfer is important for understanding a wide range of systems, from natural photosynthetic complexes to organic photovoltaics. Distinguishing the kinetic processes of energy transfer and charge separation in such systems is challenging due to the lack of clear spectral signatures of charge transfer states, which are typically nonradiative. Stark spectroscopy has proven to be a valuable method for uncovering charge transfer states. Here we extend the dimensionality of Stark spectroscopy to perform two-dimensional electronic Stark spectroscopy. We demonstrate the method on TIPS-pentacene in 3-methylpentane at 77 K. The additional frequency dimension of two-dimensional Stark spectroscopy promises to enable the identification of charge transfer states, their coupling to other charge transfer and exciton states, and their involvement in charge separation processes.

3.
J Phys Chem Lett ; 6(13): 2413-20, 2015 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-26266711

RESUMO

There has been considerable recent interest in the observation of coherent dynamics in photosynthetic systems by 2D electronic spectroscopy (2DES). In particular, coherences that persist during the "waiting time" in a 2DES experiment have been attributed to electronic, vibrational, and vibronic origins in various systems. The typical method for characterizing these coherent dynamics requires the acquisition of 2DES spectra as a function of waiting time, essentially a 3DES measurement. Such experiments require lengthy data acquisition times that degrade the signal-to-noise of the recorded coherent dynamics. We present a rapid and high signal-to-noise pulse-shaping-based approach for the characterization of coherent dynamics. Using chlorophyll a, we demonstrate that this method retains much of the information content of a 3DES measurement and provides insight into the physical origin of the coherent dynamics, distinguishing between ground and excited state coherences. It also enables high resolution determination of ground and excited state frequencies.


Assuntos
Análise Espectral/métodos , Cor , Teoria Quântica
4.
Nat Chem ; 6(8): 706-11, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25054941

RESUMO

Photosynthesis powers life on our planet. The basic photosynthetic architecture consists of antenna complexes that harvest solar energy and reaction centres that convert the energy into stable separated charge. In oxygenic photosynthesis, the initial charge separation occurs in the photosystem II reaction centre, the only known natural enzyme that uses solar energy to split water. Both energy transfer and charge separation in photosynthesis are rapid events with high quantum efficiencies. In recent nonlinear spectroscopic experiments, long-lived coherences have been observed in photosynthetic antenna complexes, and theoretical work suggests that they reflect underlying electronic-vibrational resonances, which may play a functional role in enhancing energy transfer. Here, we report the observation of coherent dynamics persisting on a picosecond timescale at 77 K in the photosystem II reaction centre using two-dimensional electronic spectroscopy. Supporting simulations suggest that the coherences are of a mixed electronic-vibrational (vibronic) nature and may enhance the rate of charge separation in oxygenic photosynthesis.


Assuntos
Fotossíntese , Complexo de Proteína do Fotossistema II/metabolismo , Simulação de Dinâmica Molecular , Oxigênio/química , Complexo de Proteína do Fotossistema II/química , Temperatura , Vibração
5.
Opt Express ; 17(18): 15541-9, 2009 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-19724552

RESUMO

We report on a comparative study of grating based plasmonic band gap cavities. Numerically, we calculate the quality factors of the cavities based on three types of grating surfaces; uniform, biharmonic and Moiré surfaces. We show that for biharmonic band gap cavities, the radiation loss can be suppressed by removing the additional grating component in the cavity region. Due to the gradual change of the surface profile in the cavity region, Moiré type surfaces support cavity modes with higher quality factors. Experimentally, we demonstrate the existence of plasmonic cavities based on uniform gratings. Effective index perturbation and cavity geometries are obtained by additional dielectric loading. Quality factor of 85 is obtained from the measured band structure of the cavity.

6.
Phys Rev Lett ; 102(6): 063901, 2009 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-19257590

RESUMO

We have demonstrated slow propagation of surface plasmons on metallic Moiré surfaces. The phase shift at the node of the Moiré surface localizes the propagating surface plasmons and adjacent nodes form weakly coupled plasmonic cavities. Group velocities around v_{g}=0.44c at the center of the coupled cavity band and almost a zero group velocity at the band edges are observed. A tight binding model is used to understand the coupling behavior. Furthermore, the sinusoidally modified amplitude about the node suppresses the radiation losses and reveals a relatively high quality factor (Q=103).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...