Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 5: 7929, 2015 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-25604483

RESUMO

The cyclin B-dependent protein kinase Cdk1 is a master regulator of mitosis and phosphorylates numerous proteins on the minimal consensus motif Ser/Thr-Pro (S/T-P). At least in several proteins, however, not well-defined motifs lacking a Pro in the +1 position, referred herein to as non-S/T-P motifs, have been shown to be phosphorylated by Cdk1. Here we show that non-S/T-P motifs in fact form consensus sequences for Cdk1 and probably play roles in mitotic regulation of physiologically important proteins. First, we show, by in vitro kinase assays, that previously identified non-S/T-P motifs all harbour one or more C-terminal Arg/Lys residues essential for their phosphorylation by Cdk1. Second, using Arg/Lys-scanning oriented peptide libraries, we demonstrate that Cdk1 phosphorylates a minimal sequence S/T-X-X-R/K and more favorable sequences (P)-X-S/T-X-[R/K](2-5) as its non-S/T-P consensus motifs. Third, on the basis of these results, we find that highly conserved linkers (typically, T-G-E-K-P) of C2H2 zinc finger proteins and a nuclear localization signal-containing sequence (matching P-X-S-X-[R/K]5) of the cytokinesis regulator Ect2 are inhibitorily phosphorylated by Cdk1, well accounting for the known mitotic regulation and function of the respective proteins. We suggest that non-S/T-P Cdk1 consensus motifs identified here may function to regulate many other proteins during mitosis.


Assuntos
Proteína Quinase CDC2/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Proteínas de Xenopus/metabolismo , Animais , Proteína Quinase CDC2/genética , Proteínas Proto-Oncogênicas/genética , Proteínas de Xenopus/genética , Xenopus laevis , Dedos de Zinco
2.
Nat Commun ; 5: 3667, 2014 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-24770399

RESUMO

In vertebrates, unfertilized eggs are arrested at metaphase of meiosis II by Emi2, a direct inhibitor of the APC/C ubiquitin ligase. Two different ubiquitin-conjugating enzymes, UbcH10 and Ube2S, work with the APC/C to target APC/C substrates for degradation. However, their possible roles and regulations in unfertilized/fertilized eggs are not known. Here we use Xenopus egg extracts to show that both UbcH10 and Ube2S are required for rapid cyclin B degradation at fertilization, when APC/C binding of Ube2S, but not of UbcH10, increases several fold, coincidently with (SCF(ß-TrCP)-dependent) Emi2 degradation. Interestingly, before fertilization, Emi2 directly inhibits APC/C-Ube2S binding via the C-terminal tail, but on fertilization, its degradation allows the binding mediated by the Ube2S C-terminal tail. Significantly, Emi2 and Ube2S bind commonly to the APC/C catalytic subunit APC10 via their similar C-terminal tails. Thus, Emi2 competitively inhibits APC/C-Ube2S binding before fertilization, while its degradation on fertilization relieves the inhibition for APC/C activation.


Assuntos
Complexos Ubiquitina-Proteína Ligase/metabolismo , Proteínas de Xenopus/metabolismo , Animais , Proteínas F-Box/metabolismo , Fertilização , Meiose/fisiologia , Ligação Proteica , Enzimas de Conjugação de Ubiquitina/metabolismo , Xenopus
3.
Mol Biol Cell ; 21(6): 905-13, 2010 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-20089832

RESUMO

Emi2 (also called Erp1) inhibits the anaphase-promoting complex/cyclosome (APC/C) and thereby causes metaphase II arrest in unfertilized vertebrate eggs. Both the D-box and the zinc-binding region (ZBR) of Emi2 have been implicated in APC/C inhibition. However, it is not well known how Emi2 interacts with and hence inhibits the APC/C. Here we show that Emi2 binds the APC/C via the C-terminal tail, termed here the RL tail. When expressed in Xenopus oocytes and egg extracts, Emi2 lacking the RL tail fails to interact with and inhibit the APC/C. The RL tail itself can directly bind to the APC/C, and, when added to egg extracts, either an excess of RL tail peptides or anti-RL tail peptide antibody can dissociate endogenous Emi2 from the APC/C, thus allowing APC/C activation. Furthermore, and importantly, the RL tail-mediated binding apparently promotes the inhibitory interactions of the D-box and the ZBR (of Emi2) with the APC/C. Finally, Emi1, a somatic paralog of Emi2, also has a functionally similar RL tail. We propose that the RL tail of Emi1/Emi2 serves as a docking site for the APC/C, thereby promoting the interaction and inhibition of the APC/C by the D-box and the ZBR.


Assuntos
Proteínas F-Box/metabolismo , Complexos Ubiquitina-Proteína Ligase/antagonistas & inibidores , Proteínas de Xenopus/metabolismo , Xenopus laevis/metabolismo , Sequência de Aminoácidos , Ciclossomo-Complexo Promotor de Anáfase , Animais , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Células Cultivadas , Proteínas F-Box/química , Proteínas F-Box/genética , Humanos , Meiose/fisiologia , Dados de Sequência Molecular , Ligação Proteica , Estrutura Terciária de Proteína , Alinhamento de Sequência , Proteínas de Xenopus/química , Proteínas de Xenopus/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...